The circular electron-positron collider beam energy measurement with Compton scattering and beam tracking method

被引:7
|
作者
Tang, Guangyi [1 ]
Chen, Shanhong [1 ]
Chen, Yuan [1 ]
Duan, Zhe [1 ]
Ruan, Manqi [1 ]
An, Guangpeng [1 ,2 ]
Huang, Yongsheng [1 ,2 ]
Lou, Xinchou [1 ,2 ]
Zhang, Jianyong [1 ,2 ]
Lan, Xiaofei [3 ]
Zhang, Chunlei [4 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China
[3] China West Normal Univ, Phys & Space Sci Coll, Nanchong 637009, Peoples R China
[4] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2020年 / 91卷 / 03期
基金
中国国家自然科学基金;
关键词
OF-MASS ENERGIES;
D O I
10.1063/1.5132975
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The beam energy of the circular electron-positron collider should be measured precisely to the order of 1 MeV, in order to decrease the uncertainty of the Higgs/W/Z bosons' mass measurement. For this purpose, a lepton bunch is extracted from the collider and collides with an Yttrium-Aluminum-Garnet laser pulse. After the inverse Compton scattering, the main beam and the scattered beam pass through an analytical magnetic field and are deflected to different angles. At the end of the drift beam pipes, the deflecting distances are detected with the spatial resolution of several microns. The systematic uncertainties caused by the detector arrangement, the magnetic field, the angle between the detector plane and the incident beam, and the synchrotron radiation are discussed in detail. The simulations of the statistical errors are given with a toy Monte Carlo sample. With some proper corrections, the beam energy uncertainty of the Higgs mode is around 2 MeV. Our method is applicable to different operating modes of the collider.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Deeply Virtual Compton Scattering with a Positron Beam
    Girod, Francois-Xavier
    Elouadrhiri, Latifa
    Burkert, Volker D.
    INTERNATIONAL WORKSHOP ON PHYSICS WITH POSITRONS AT JEFFERSON LAB, 2018, 1970
  • [22] Availability and critical systems of the Future Circular Electron-Positron Collider
    Niemi, Arto
    Penttinen, Jussi-Pekka
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 963 (963):
  • [23] COHERENT BEAM-BEAM INTERACTIONS IN ELECTRON-POSITRON COLLIDERS
    KRISHNAGOPAL, S
    SIEMANN, R
    PHYSICAL REVIEW LETTERS, 1991, 67 (18) : 2461 - 2464
  • [24] AN ELECTRON-POSITRON BEAM-PLASMA EXPERIMENT
    GREAVES, RG
    SURKO, CM
    PHYSICAL REVIEW LETTERS, 1995, 75 (21) : 3846 - 3849
  • [25] Electron-positron beam-plasma experiment
    Greaves, R.G.
    Surko, C.M.
    Physical Review Letters, 1995, 75 (21):
  • [26] A beam-position monitor system at the VEPP-4M electron-positron collider
    Bekhtenev, E. A.
    Karpov, G. V.
    Piminov, P. A.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2017, 60 (05) : 679 - 685
  • [28] Electron (positron) beam polarization by Compton scattering on circularly polarized laser photons
    Kotkin, GL
    Serbo, VG
    Telnov, VI
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2003, 6 (01):
  • [29] An electron-positron beam-plasma instability
    Gilbert, SJ
    Dubin, DHE
    Greaves, RG
    Surko, CM
    PHYSICS OF PLASMAS, 2001, 8 (11) : 4982 - 4994
  • [30] Beam-beam study on the upgrade of Beijing Electron Positron Collider
    Wang, S
    Cai, YH
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3113 - 3115