Combustion synthesis of Li8Bi2(MoO4)7 and photocatalytic properties

被引:5
|
作者
Lv, Dongdong [1 ]
Zhang, Dafeng [1 ]
Pu, Xipeng [1 ]
Gao, Meichao [1 ]
Ma, Huiyan [1 ]
Li, Huaiyong [1 ]
Zhang, Tongtong [1 ]
机构
[1] Liaocheng Univ, Sch Mat Sci & Engn, Liaocheng 252000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Li8Bi2(MoO4)(7); Combustion; Photocatalyst; Functional; Powder technology; METHYLENE-BLUE; LIGHT; COMPOSITE;
D O I
10.1016/j.matlet.2015.01.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li8Bi2(MoO4)(7) was synthesized by a one-step combustion method. The structure, morphology, adsorbance, optical and photocatalytic properties of as-obtained sample were studied by X-ray powder diffraction, scanning electron microscopy, ultraviolet-visible spectrophotometry. The experimental results show that the formation of tetragonal Li8Bi2(MoO4)(7) was one-pot achieved. The sample exhibits a irregular particle morphology with an average size of similar to 0.6 mu m. The direct energy band gap calculated from the diffuse reflectance spectrum is 3.25 eV. Compared with TiO2 (P25), as-synthesized Li8Bi2 (MoO4)(7) shows better visible light photodegradation performance for MB, which can be attributed to its excellent adsorbability. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 152
页数:3
相关论文
共 50 条
  • [21] Simulation of the NaGd(MoO4)2–NaEu(MoO4)2 and Na2Gd4(MoO4)7–Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method
    V. B. Dudnikova
    E. V. Zharikov
    N. N. Eremin
    Physics of the Solid State, 2019, 61 : 555 - 564
  • [22] Phase Relations in the Li2MoO4–BaMoO4–Gd2(MoO4)3 System and Properties of a Li3Ba2Gd3(MoO4)8:Er3+ Phosphor
    N. M. Kozhevnikova
    Inorganic Materials, 2023, 59 (1) : 98 - 104
  • [23] Crystal structure and magnetic properties of Li,Cr-containing molybdates Li3Cr(MoO4)3, LiCr(MoO4)2 and Li1.8Cr1.2(MoO4)3
    Sarapulova, A.
    Mikhailova, D.
    Senyshyn, A.
    Ehrenberg, H.
    JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (12) : 3262 - 3268
  • [24] Synthesis and photoluminescence properties of HEu(MoO4)2 nanophosphor
    Watanabe, Mizuki
    Uematsu, Kazuyoshi
    Kim, Sun Woog
    Toda, Kenji
    Sato, Mineo
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2014, 15 (03): : 173 - 176
  • [25] Na/Li substitution effect on the structural, electrical and magnetic properties of LiCr(MoO4)2 and β-Li0.87Na0.13Cr(MoO4)2
    Sonni, Manel
    Zid, Mohamed Faouzi
    Hlil, El Kebir
    Zaidat, Kader
    Rossignol, Cecile
    Obbade, Said
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [26] Simulation of the NaGd(MoO4)2-NaEu(MoO4)2 and Na2Gd4(MoO4)7-Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method
    Dudnikova, V. B.
    Zharikov, E. V.
    Eremin, N. N.
    PHYSICS OF THE SOLID STATE, 2019, 61 (04) : 555 - 564
  • [27] NaCe(MoO4)2 microcrystals: Hydrothermal synthesis, characterization and photocatalytic performance
    Moura, J. V. B.
    Pinheiro, G. S.
    Silveira, J. V.
    Freire, P. T. C.
    Viana, B. C.
    Luz-Lima, C.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 111 : 258 - 265
  • [28] The crystal structures of phenacite-type Li2(MoO4), and scheelite-type LiY(MoO4)2 and LiNd(MoO4)2
    Kolitsch, U
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2001, 216 (08): : 449 - 454
  • [29] Growth and FR characteristics of Li2Tb4(MoO4)7 crystal
    Guo, Feiyun
    Zhang, Ruru
    Cui, Zhihui
    Liu, Chunchen
    Chen, Jianzhong
    OPTICAL MATERIALS, 2012, 35 (02) : 227 - 230
  • [30] Electronic Structure and Luminescence Spectroscopy of MIBi(MoO4)2 (MI = Li, Na, K), LiY(MoO4)2 and NaFe(MoO4)2 Molybdates
    Hizhnyi, Yu
    Nedilko, S.
    Chornii, V.
    Nikolaenko, T.
    Zatovsky, I.
    Terebilenko, K.
    Boiko, R.
    OXIDE MATERIALS FOR ELECTRONIC ENGINEERING - FABRICATION, PROPERTIES AND APPLICATIONS, 2013, 200 : 114 - +