A note on functional equations connected with the Cauchy mean value theorem

被引:1
|
作者
Lukasik, Radoslaw [1 ]
机构
[1] Univ Silesia, Inst Math, Ul Bankowa 14, PL-40007 Katowice, Poland
关键词
Functional equation; Mean value theorem; Linearly dependent functions; QUADRATIC POLYNOMIALS; PROPERTY;
D O I
10.1007/s00010-018-0583-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe the solution (f, g) of the equation [f(x) - f(y)]g' (alpha x + (1 - alpha)y) = [g(x) - g(y)]f'(alpha x + (1 - alpha)y), x, y is an element of I, where I subset of R is an open interval, f, g : I -> R are differentiable, alpha is a fixed number from (0, 1).
引用
收藏
页码:935 / 947
页数:13
相关论文
共 50 条
  • [31] A NOTE ON DIXON PROOF OF CAUCHY INTEGRAL THEOREM
    LOEB, PA
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (03): : 242 - 244
  • [32] A note on Cauchy-Lipschitz-Picard theorem
    Feng, Zonghong
    Li, Fengying
    Lv, Ying
    Zhang, Shiqing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [33] Probabilistic Cauchy functional equations
    Azmoodeh, Ehsan
    Beelders, Noah
    Mishura, Yuliya
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [34] CAUCHY FUNCTIONAL-EQUATION IN THE MEAN
    ELLIOTT, PDTA
    ADVANCES IN MATHEMATICS, 1984, 51 (03) : 253 - 257
  • [35] CAUCHY-KOWALEWSKY THEOREM FOR EQUATIONS WITH SINGULARITIES
    IVANOV, LA
    DOKLADY AKADEMII NAUK SSSR, 1976, 226 (05): : 1005 - 1008
  • [36] Another Mean Value Theorem
    Phu Cuong Le Van
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (08): : 755 - 755
  • [37] A NEW MEAN VALUE THEOREM
    潘承洞
    丁夏畦
    ScienceinChina,SerA., 1979, Ser.A.1979(S1) (S1) : 149 - 161
  • [38] To the mean-value theorem
    Trokhimchuk Y.Y.
    Journal of Mathematical Sciences, 2013, 188 (2) : 128 - 145
  • [39] A MEAN VALUE TYPE THEOREM
    DOTSON, WG
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (02): : 195 - &
  • [40] BOMBIERIS MEAN VALUE THEOREM
    GALLAGHE, PX
    MATHEMATIKA, 1968, 15 (29P1) : 1 - &