Reinforced Random Forest

被引:5
|
作者
Paul, Angshuman [1 ]
Mukherjee, Dipti Prasad [1 ]
机构
[1] Indian Stat Inst, 203 BT Rd, Kolkata, India
来源
TENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2016) | 2016年
关键词
Random forest; reinforcement learning; classification accuracy; shortest path; MITOSIS;
D O I
10.1145/3009977.3010003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning improves classification accuracy. But use of reinforcement learning is relatively unexplored in case of random forest classifier. We propose a reinforced random forest (RRF) classifier that exploits reinforcement learning to improve classification accuracy. Our algorithm is initialized with a forest. Then the entire training data is tested using the initial forest. In order to reinforce learning, we use mis-classified data points to grow certain number of new trees. A subset of the new trees is added to the existing forest using a novel graph-based approach. We show that addition of these trees ensures improvement in classification accuracy. This process is continued iteratively until classification accuracy saturates. The proposed RRF has low computational burden. We achieve at least 3% improvement in F-measure compared to random forest in three breast cancer datasets. Results on benchmark datasets show significant reduction in average classification error.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Random Forest for the Real Forests
    Agrawal, Sharan
    Rana, Shivam
    Ahmad, Tanvir
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 301 - 309
  • [42] PCA Embedded Random Forest
    Gardner, Charles
    Lo, Dan Chia-Tien
    SOUTHEASTCON 2021, 2021, : 783 - 788
  • [43] Dissimilarity Random Forest Clustering
    Bicego, Manuele
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 936 - 941
  • [44] Face classification by a random forest
    Kouzani, A. Z.
    Nahavandi, S.
    Khoshmanesh, K.
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 652 - 655
  • [45] Thresholding a Random Forest Classifier
    Baumann, Florian
    Li, Fangda
    Ehlers, Arne
    Rosenhahn, Bodo
    ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT II, 2014, 8888 : 95 - 106
  • [46] Playing in Unison in the Random Forest
    Wieczorkowska, Alicja A.
    Kursa, Miron B.
    Kubera, Elzbieta
    Rudnicki, Radoslaw
    Rudnicki, Witold R.
    SECURITY AND INTELLIGENT INFORMATION SYSTEMS, 2012, 7053 : 226 - +
  • [47] Random Pairwise Shapelets Forest
    Shi, Mohan
    Wang, Zhihai
    Yuan, Jidong
    Liu, Haiyang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 68 - 80
  • [48] Musical Instruments in Random Forest
    Kursa, Miron
    Rudnicki, Witold
    Wieczorkowska, Alicja
    Kubera, Elzbieta
    Kubik-Komar, Agnieszka
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2009, 5722 : 281 - +
  • [49] Random Forest Prediction Intervals
    Zhang, Haozhe
    Zimmerman, Joshua
    Nettleton, Dan
    Nordman, Daniel J.
    AMERICAN STATISTICIAN, 2020, 74 (04): : 392 - 406
  • [50] Random Forest for Image Annotation
    Fu, Hao
    Zhang, Qian
    Qiu, Guoping
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 86 - 99