Direct numerical simulations are performed of a single-step, nonpremixed, Arrhenius-type reaction developing in isotropic, incompressible, decaying turbulence, for conditions where flame extinction and re-ignition occur. The Lagrangian characteristics of scalar diffusion, information necessary for modeling approaches such as some implementations of probability density function (PDF) methods, are investigated by tracking fluid particles. Focusing on the mixture fraction and temperature as the scalar variables of interest, fluid particles are characterized as continuously burning or noncontinuously burning based upon their recent time history, and noncontinuously burning particles are further characterized based upon their initial regions relative to the flame zone. The behavior of the mixture fraction and temperature fields is contrasted for the different types of particles characterized. Significant differences among these characterized particles are found, for example, in the unclosed conditional expectations of scalar diffusion appearing in the composition PDF equations. (C) 2003 American Institute of Physics.