Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating

被引:177
|
作者
Qi, Kezhen [1 ,2 ]
Lv, Wenxiu [1 ]
Khan, Iltaf [3 ]
Liu, Shu-yuan [4 ,5 ]
机构
[1] Shenyang Normal Univ, Coll Chem & Chem Engn, Inst Catalysis Energy & Environm, Shenyang 110034, Liaoning, Peoples R China
[2] Fuzhou Univ, Coll Chem, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China
[3] Heilongjiang Univ, Sch Chem Chem Engn & Mat, Minist Educ, Key Lab Funct Inorgan Mat Chem, Harbin 158308, Heilongjiang, Peoples R China
[4] Shenyang Med Coll, Dept Pharmacol, Shenyang 110034, Liaoning, Peoples R China
[5] Harbin Normal Univ, Coll Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; CoP quantum dots; Electroless plating; H-2; generation; g-C3N4; CARBON NITRIDE NANOSHEETS; Z-SCHEME PHOTOCATALYST; HYDROGEN-PRODUCTION; NICKEL PHOSPHIDE; G-C3N4; NANOSHEETS; DECORATED G-C3N4; COCATALYST; PERFORMANCE; FABRICATION; EVOLUTION;
D O I
10.1016/S1872-2067(19)63459-5
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Photocatalytic water splitting is a promising method for hydrogen production. Numerous efficient photocatalysts have been synthesized and utilized. However, photocatalysts without a noble metal as the co-catalyst have been rarely reported. Herein, a CoP co-catalyst-modified graphitic-C3N4 (g-C3N4/CoP) is investigated for photocatalytic water splitting to produce H-2. The g-C3N4/CoP composite is synthesized in two steps. The first step is related to thermal decomposition, and the second step involves an electroless plating technique. The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots (QDs). Among the as-synthesized samples, the optimized one (g-C3N4/CoP-4%) shows exceptional photocatalytic activity as compared with pristine g-C3N4, generating H-2 at a rate of 936 mu mol g(-1) h(-1)even higher than that of g-C3N4 with 4 wt% Pt (665 mu mol g(-1) h(-1)). The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm, but after being composited with CoP, g-C3N4/CoP-4% has an absorption edge at 497 nm. Furthermore, photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C(3)N(4 )not only enhances the charge separation, but also improves the transfer of photogenerated e(-)h(+) pairs, thus improving the photocatalytic performance of the catalyst to generate H-2. This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [41] Enhanced photocatalytic H2 production over g-C3N4/NiS hybrid photocatalyst
    Samaniego-Benitez, J. Enrique
    Jimenez-Rangel, K.
    Lartundo-Rojas, L.
    Garcia-Garcia, A.
    Mantilla, A.
    MATERIALS LETTERS, 2021, 290
  • [42] Delocalized Electrons via In Situ CNT Growth on Au/g-C3N4 for Boosting Photocatalytic H2 Evolution
    Xia, Zhihua
    Chen, Cheng
    Qi, Xiaoying
    Xu, Quanlong
    Tang, Hua
    Liu, Gang
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (01)
  • [43] Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4
    Wang, Yayang
    Yang, Xiaojie
    Lou, Jiahui
    Huang, Yaqiong
    Peng, Jian
    Li, Yuesheng
    Liu, Yi
    MOLECULES, 2022, 27 (23):
  • [44] MOF nanosheet-derived carbon-layer-coated CoP/g-C3N4 photocatalysts with enhanced charge transfer for efficient photocatalytic H2 generation
    Ma, Yan
    Chi, Dianjun
    Tao, Yuping
    Liu, Shengjun
    Dong, Lei
    Chen, Yu
    He, Lifang
    Zhang, Kui
    CRYSTENGCOMM, 2022, 24 (28) : 5141 - 5148
  • [45] In situ synthesis of g-C3N4/Ti3C2Tx nano-heterostructures for enhanced photocatalytic H2 generation via water splitting
    Tambe, Amol B.
    Arbuj, Sudhir S.
    Umarji, Govind G.
    Kulkarni, Sulbha K.
    Kale, Bharat B.
    RSC ADVANCES, 2023, 13 (50) : 35369 - 35378
  • [46] The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment
    Qu, Xiaoyu
    Hu, Shaozheng
    Li, Ping
    Li, Zheng
    Wang, Hui
    Ma, Hongfei
    Li, Wei
    DIAMOND AND RELATED MATERIALS, 2018, 86 : 159 - 166
  • [47] Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites
    Jimenez-Calvo, Pablo
    Marchal, Clement
    Cottineau, Thomas
    Caps, Valerie
    Keller, Valerie
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (24) : 14849 - 14863
  • [48] Py-COOH modified g-C3N4 nanosheets with enhanced visible-light photocatalytic H2 production
    Lv, Zhiguo
    Cheng, Xi
    Liu, Baoquan
    Guo, ZhenMei
    Zhang, Chao
    APPLIED SURFACE SCIENCE, 2020, 504 (504)
  • [49] Boosting photocatalytic H2 generation by effective proton shuttle and hydrogen activation on AgBr-loaded g-C3N4
    Shang, Yanyan
    Fan, Huiqing
    Lei, Lin
    Wang, Weijia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (100) : 39854 - 39865
  • [50] Rapid polymerization synthesizing high-crystalline g-C3N4 towards boosting solar photocatalytic H2 generation
    Wang, Longyan
    Hong, Yuanzhi
    Liu, Enli
    Wang, Zhiguo
    Chen, Jiahui
    Yang, Shuang
    Wang, Jingbo
    Lin, Xue
    Shi, Junyou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (11) : 6425 - 6436