Inconsistency-based active learning for support vector machines

被引:33
|
作者
Wang, Ran [1 ]
Kwong, Sam [1 ]
Chen, Degang [2 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[2] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Active learning; Concept learning; Inconsistency; Sample selection; Support vector machine; IMAGE RETRIEVAL; QUERY;
D O I
10.1016/j.patcog.2012.03.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In classification tasks, active learning is often used to select out a set of informative examples from a big unlabeled dataset. The objective is to learn a classification pattern that can accurately predict labels of new examples by using the selection result which is expected to contain as few examples as possible. The selection of informative examples also reduces the manual effort for labeling, data complexity, and data redundancy, thus improves learning efficiency. In this paper, a new active learning strategy with pool-based settings, called inconsistency-based active learning, is proposed. This strategy is built up under the guidance of two classical works: (1) the learning philosophy of query-by-committee (QBC) algorithm; and (2) the structure of the traditional concept learning model: from-general-to-specific (GS) ordering. By constructing two extreme hypotheses of the current version space, the strategy evaluates unlabeled examples by a new sample selection criterion as inconsistency value, and the whole learning process could be implemented without any additional knowledge. Besides, since active learning is favorably applied to support vector machine (SVM) and its related applications, the strategy is further restricted to a specific algorithm called inconsistency-based active learning for SVM (I-ALSVM). By building up a GS structure, the sample selection process in our strategy is formed by searching through the initial version space. We compare the proposed I-ALSVM with several other pool-based methods for SVM on selected datasets. The experimental result shows that, in terms of generalization capability, our model exhibits good feasibility and competitiveness. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3751 / 3767
页数:17
相关论文
共 50 条
  • [21] Temporal Inconsistency-Based Intrinsic Reward for Multi-Agent Reinforcement Learning
    Sun, Shaoqi
    Xu, Kele
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [22] Active learning with support vector machines in the relevance feedback document retrieval
    Onoda, Takashi
    Murata, Hiroshi
    Yamada, Seiji
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 2004 - +
  • [23] Decompositional Rule Extraction from Support Vector Machines by Active Learning
    Martens, David
    Baesens, Bart
    Van Gestel, Tony
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (02) : 178 - 191
  • [24] Active learning support vector machines for optimal sample selection in classification
    Zomer, S
    Sänchez, MDN
    Brereton, RG
    Pavón, JLP
    JOURNAL OF CHEMOMETRICS, 2004, 18 (06) : 294 - 305
  • [25] Sparse multikernel support vector regression machines trained by active learning
    Ceperic, V.
    Gielen, G.
    Baric, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (12) : 11029 - 11035
  • [26] Active Learning with Support Vector Machines in Remotely Sensed Image Classification
    Sun, Zhichao
    Liu, Zhigang
    Liu, Suhong
    Zhang, Yun
    Yang, Bing
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 2886 - 2891
  • [27] Entropy-based active learning with support vector machines for content-based image retrieval
    Jing, F
    Li, MJ
    Zhang, HJ
    Zhang, B
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 85 - 88
  • [28] Active learning support vector machines with low-rank transformation
    Gong, Liang
    Guo, Wenbo
    Yang, Yupu
    INTELLIGENT DATA ANALYSIS, 2018, 22 (04) : 701 - 715
  • [29] QBC Inconsistency-Based Threat Intelligence IOC Recognition
    Zeng, Wenli
    Liu, Zhi
    Yang, Yaru
    Yang, Gen
    Luo, Qin
    IEEE ACCESS, 2021, 9 : 153102 - 153107
  • [30] Learning curves of support vector machines
    Ikeda, K
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 1708 - 1713