3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering

被引:32
|
作者
Iglesias-Mejuto, Ana [1 ]
Garcia-Gonzalez, Carlos A. [1 ]
机构
[1] Univ Santiago de Compostela, iMATUS & Hlth Res Inst Santiago deCompostela IDIS, Dept Pharmacol Pharm & Pharmaceut Technol, Fac Pharm,ID Farma Grp GI 1645, E-15782 Santiago De Compostela, Spain
关键词
3D-printing; glutaraldehyde; aerogel; hydroxyapatite; bone scaffold; LINKING STRATEGIES; DRUG-DELIVERY; HYDROXYAPATITE; BIOMATERIALS; ADSORPTION; MEMBRANES;
D O I
10.3390/polym14061211
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The fabrication of bioactive three-dimensional (3D) hydrogel scaffolds from biocompatible materials with a complex inner structure (mesoporous and macroporous) and highly interconnected porosity is crucial for bone tissue engineering (BTE). 3D-printing technology combined with aerogel processing allows the fabrication of functional nanostructured scaffolds from polysaccharides for BTE with personalized geometry, porosity and composition. However, these aerogels are usually fragile, with fast biodegradation rates in biological aqueous fluids, and they lack the sterility required for clinical practice. In this work, reinforced alginate-hydroxyapatite (HA) aerogel scaffolds for BTE applications were obtained by a dual strategy that combines extrusion-based 3D-printing and supercritical CO2 gel drying with an extra crosslinking step. Gel ageing in CaCl2 solutions and glutaraldehyde (GA) chemical crosslinking of aerogels were performed as intermediate and post-processing reinforcement strategies to achieve highly crosslinked aerogel scaffolds. Nitrogen adsorption-desorption (BET) and SEM analyses were performed to assess the textural parameters of the resulting alginate-HA aerogel scaffolds. The biological evaluation of the aerogel scaffolds was performed regarding cell viability, hemolytic activity and bioactivity for BTE. The impact of scCO(2)-based post-sterilization treatment on scaffold properties was also assessed. The obtained aerogels were dual porous, bio- and hemocompatible, as well as endowed with high bioactivity that is dependent on the HA content. This work is a step forward towards the optimization of the physicochemical performance of advanced biomaterials and their sterilization.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications
    Mohammadi-Zerankeshi, Meysam
    Alizadeh, Reza
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 2440 - 2446
  • [32] Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering
    Mitun Das
    Orna Sharabani-Yosef
    Noam Eliaz
    Daniel Mandler
    Journal of Materials Research, 2021, 36 : 3833 - 3842
  • [33] 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering
    Tariverdian, Tara
    Behnamghader, Aliasghar
    Milan, Peiman Brouki
    Barzegar-Bafrooei, Hadi
    Mozafari, Masoud
    CERAMICS INTERNATIONAL, 2019, 45 (11) : 14029 - 14038
  • [34] Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering
    Gharibshahian, Maliheh
    Salehi, Majid
    Beheshtizadeh, Nima
    Kamalabadi-Farahani, Mohammad
    Atashi, Amir
    Nourbakhsh, Mohammad-Sadegh
    Alizadeh, Morteza
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [35] 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering
    Chen, Mi
    Zhao, Fujian
    Li, Yannan
    Wang, Min
    Chen, Xiaofeng
    Lei, Bo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [36] 3D-Printed PCL Scaffolds Combined with Juglone for Skin Tissue Engineering
    Ayran, Musa
    Dirican, Akif Yahya
    Saatcioglu, Elif
    Ulag, Songul
    Sahin, Ali
    Aksu, Burak
    Croitoru, Alexa-Maria
    Ficai, Denisa
    Gunduz, Oguzhan
    Ficai, Anton
    BIOENGINEERING-BASEL, 2022, 9 (09):
  • [37] Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications
    Aliabouzar, Mitra
    Zhang, Grace Lijie
    Sarkar, Kausik
    BIOMEDICAL MATERIALS, 2018, 13 (05)
  • [38] Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application
    Ilhan, Elif
    Ulag, Songul
    Sahin, Ali
    Ekren, Nazmi
    Kilic, Osman
    Oktar, Faik Nuzhet
    Gunduz, Oguzhan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2020), 2020, 12108 : 175 - 184
  • [39] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [40] Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of "Hidden" Importance in the Physical Properties of Scaffolds
    Cubo-Mateo, Nieves
    Rodriguez-Lorenzo, Luis M.
    POLYMERS, 2020, 12 (07) : 1 - 14