Bearing Fault Analysis Using Variational Mode Decomposition

被引:0
|
作者
Mohanty [1 ]
Gupta, Karunesh Kumar [1 ]
Raju, Kota Solomon [1 ]
机构
[1] Birla Inst Technol & Sci, Pilani, Rajasthan, India
关键词
Ball Bearing; Accelerometer Sensor; Variational Mode Decomposition (VMD); Empirical Mode Decomposition (EMD); Fast Fourier Transform (FFT);
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing health analysis plays a significant role in industry to improve reliability and performance of critical processes by alarming the faults at early stages. Conventional techniques do no guarantee to detect the faults at early stages because the low energy bearing frequencies get suppressed by stern noise and higher vibrations. The Fast Fourier Transform fails to analyse the transient and non-stationary signals directly. This paper performs the signal analysis on vibration data of ball bearing using Variational mode decomposition (VMD). Firstly, the intrinsic mode functions are extracted using VMD followed by Fast Fourier Transform, and finally the status of bearing is analyzed to be faulty or impeccable. This paper, stress on VMD rather than on EMD, due to its qualities in the detection of close tone vibration signatures and takes less computation time.
引用
收藏
页码:814 / +
页数:5
相关论文
共 50 条
  • [41] Bearing Fault Feature Extraction Method Based on Variational Mode Decomposition of Fractional Fourier Transform
    Wei, Ming Hui
    Jiang, Li Xia
    Zhang, Di
    Wang, Bin
    Tu, Feng Miao
    Jiang, Peng Bo
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2022, 58 (03) : 221 - 235
  • [42] Fault diagnosis of wind turbine bearing based on variational mode decomposition and Teager energy operator
    Zhao, Hongshan
    Li, Lang
    IET RENEWABLE POWER GENERATION, 2017, 11 (04) : 453 - 460
  • [43] Bearing Fault Feature Extraction Method Based on Variational Mode Decomposition of Fractional Fourier Transform
    Ming Hui Wei
    Li Xia Jiang
    Di Zhang
    Bin Wang
    Feng Miao Tu
    Peng Bo Jiang
    Russian Journal of Nondestructive Testing, 2022, 58 : 221 - 235
  • [44] Hardware implementation of bearing fault diagnosis using empirical mode decomposition
    Ninawe, Swapnil
    Deshmukh, Raghavendra
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [45] Fault diagnosis method for spherical roller bearing of wind turbine based on variational mode decomposition and singular value decomposition
    An, Xueli
    Zeng, Hongtao
    JOURNAL OF VIBROENGINEERING, 2016, 18 (06) : 3548 - 3556
  • [46] Application of Variational Mode Decomposition Based Demodulation Analysis in Gearbox Fault Diagnosis
    Zhang, Dong
    Feng, Zhipeng
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 1469 - 1474
  • [47] A Novel Fault Diagnosis of a Rolling Bearing Method Based on Variational Mode Decomposition and an Artificial Neural Network
    Liang, Xiaobei
    Yao, Jinyong
    Zhang, Weifang
    Wang, Yanrong
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [48] Rolling bearing fault diagnosis based on variational mode decomposition and weighted multidimensional feature entropy fusion
    Lei, Na
    Huang, Feihu
    Li, Chunhui
    JOURNAL OF VIBROENGINEERING, 2024, 26 (03) : 590 - 614
  • [49] Rolling bearing fault diagnosis based on the variational mode decomposition filtering and extreme point envelope order
    Wu Y.
    Xin H.
    Wang J.
    Wang X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2018, 37 (14): : 102 - 107
  • [50] Rolling Bearing Fault Diagnosis Based on Weighted Variational Mode Decomposition and Cyclic Spectrum Slice Energy
    Li, Dongkai
    Liu, Xiaoang
    You, Yue
    Zhen, Dong
    Hu, Wei
    Lu, Kuihua
    Gu, Fengshou
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 643 - 654