Existence of a solution for generalized vector variational inequalities

被引:0
|
作者
Chen, GY
Goh, CJ
Yang, XQ [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
[3] Univ Auckland, Dept Math, Auckland 1, New Zealand
关键词
vector variational inequality; quasi-vector variational inequality; cone-quasi-convexity; nonlinear scalarization;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is known that vector variational inequality models arise from vector optimization and vector traffic equilibria. In this paper, existence results of a solution for a generalized vector pre-variational inequality and a generalized vector pre-quasi-variational inequality are established. The main condition used is that the underlying vector-valued function is assumed to be cone-quasi-convex. The main techniques employed are a nonlinear scalarization and fixed point theorems.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] NONEMPTINESS AND BOUNDEDNESS OF SOLUTION SETS FOR PERTURBED GENERALIZED VECTOR VARIATIONAL INEQUALITIES
    Liu, Dan-Yang
    Fang, Ya-Ping
    Hu, Rong
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 289 - 305
  • [32] On system of generalized vector variational inequalities
    Hou, S. H.
    Yu, H.
    Chen, G. Y.
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 739 - 749
  • [33] Decomposition of generalized vector variational inequalities
    Popovici, Nicolae
    Rocca, Matteo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1516 - 1523
  • [34] Decomposable generalized vector variational inequalities
    Allevi, E
    Gnudi, A
    Konnov, IV
    OPTIMIZATION AND CONTROL WITH APPLICATIONS, 2005, 96 : 497 - 507
  • [35] SYSTEM OF GENERALIZED VECTOR VARIATIONAL INEQUALITIES
    方亚平
    黄南京
    ActaMathematicaScientia, 2005, (04) : 587 - 593
  • [36] System of generalized vector variational inequalities
    Fang, YP
    Huang, NJ
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (04) : 587 - 593
  • [37] On system of generalized vector variational inequalities
    S. H. Hou
    H. Yu
    G. Y. Chen
    Journal of Global Optimization, 2008, 40 : 739 - 749
  • [38] On the solution existence of pseudomonotone variational inequalities
    Kien, B. T.
    Yao, J. -C.
    Yen, N. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (01) : 135 - 145
  • [39] On the solution existence of pseudomonotone variational inequalities
    B. T. Kien
    J.-C. Yao
    N. D. Yen
    Journal of Global Optimization, 2008, 41 : 135 - 145
  • [40] On the existence of a solution to a class of variational inequalities
    Chabrowski J.H.
    Ricerche di Matematica, 2011, 60 (2) : 333 - 350