Multi-View Face Recognition Via Well-Advised Pose Normalization Network

被引:8
|
作者
Shao, Xiaohu [1 ,2 ]
Zhou, Xiangdong [1 ]
Li, Zhenghao [1 ]
Shi, Yu [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view face recognition; GAN; face frontalization; quality assessment; MODEL;
D O I
10.1109/ACCESS.2020.2983459
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous face frontalization methods based on 3D Morphable Model (3DMM) and Generative Adversarial Networks (GAN) have made great progress in multi-view face recognition. However, facial feature analysis and identity discrimination often suffer from failure frontalization results because of monotonous single-domain training and unpredictable input profile faces. To overcome the drawback, we present a novel approach named Well-advised Pose Normalization Network (WAPNN), which leverages multiple domains and extracts features considering their frontalization qualities wisely, to achieve a high accuracy on multi-view face recognition. Through multi-domain datasets, we design an end-to-end facial pose normalization network with adaptive weights on different objectives to exploit potentialities of various profile-front relationships. Meanwhile, the proposed method encourages intra-class compactness and inter-class separability between facial features by introducing quality-aware feature fusion. Experimental analyses show that our method effectively recovers frontal faces with good-quality textures and high identity-preserving, and significantly reduces the impact of various poses on face recognition under both constrained and wild environments.
引用
收藏
页码:66400 / 66410
页数:11
相关论文
共 50 条
  • [41] Multi-View Facial Expression Recognition with Multi-View Facial Expression Light Weight Network
    Pattern Recognition and Image Analysis, 2020, 30 : 805 - 814
  • [42] Multi-view face recognition using deep neural networks
    Zhao, Feng
    Li, Jing
    Zhang, Lu
    Li, Zhe
    Na, Sang-Gyun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 111 (375-380): : 375 - 380
  • [43] Multi-view Face Expression Recognition-A Hybrid Method
    Natarajan, Prakash
    Muthuswamy, Vijayalakshmi
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 2, 2015, 325 : 799 - 808
  • [44] A kernel machine based approach for multi-view face recognition
    Lu, JW
    Plataniotis, KN
    Venetsanopoulos, AN
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 265 - 268
  • [45] Double fusion filtering based multi-view face recognition
    Farhat, M.
    Alfalou, A.
    Hamam, H.
    Brosseau, C.
    OPTICS COMMUNICATIONS, 2009, 282 (11) : 2136 - 2142
  • [46] Inter-Communication Classification for Multi-View Face Recognition
    Moujahdi, Chouaib
    Ghouzali, Sanaa
    Mikram, Mounia
    Wadood, Abdul
    Rziza, Mohammed
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2014, 11 (04) : 387 - 395
  • [47] Joint dynamic sparse representation for multi-view face recognition
    Zhang, Haichao
    Nasrabadi, Nasser M.
    Zhang, Yanning
    Huang, Thomas S.
    PATTERN RECOGNITION, 2012, 45 (04) : 1290 - 1298
  • [48] MiLDA: A graph embedding approach to multi-view face recognition
    Guo, Yiwen
    Ding, Xiaoqing
    Xue, Jing-Hao
    NEUROCOMPUTING, 2015, 151 : 1255 - 1261
  • [49] Gender Recognition Based on Fusion of Face and Multi-view Gait
    Zhang, De
    Wang, Yunhong
    ADVANCES IN BIOMETRICS, 2009, 5558 : 1010 - 1018
  • [50] Kernel machine based learning for multi-view face detection and pose estimation
    Li, SZ
    Fu, QD
    Gu, L
    Schölkopf, B
    Cheng, YM
    Zhang, HJ
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 674 - 679