The same growth of FB and NR symmetric cone complementarity functions

被引:5
|
作者
Bi, Shujun [2 ]
Pan, Shaohua [2 ]
Chen, Jein-Shan [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[2] S China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China
关键词
Symmetric cone; FB and NR complementarity functions; Growth; EUCLIDEAN JORDAN ALGEBRAS; INTERIOR-POINT ALGORITHMS; MERIT FUNCTIONS; LINEAR TRANSFORMATIONS;
D O I
10.1007/s11590-010-0257-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We establish that the Fischer-Burmeister (FB) complementarity function and the natural residual (NR) complementarity function associated with the symmetric cone have the same growth, in terms of the classification of Euclidean Jordan algebras. This, on the one hand, provides an affirmative answer to the second open question proposed by Tseng (J Optim Theory Appl 89:17-37, 1996) for the matrix-valued FB and NR complementarity functions, and on the other hand, extends the third important inequality of Lemma 3.1 in the aforementioned paper to the setting of Euclidean Jordan algebras. It is worthwhile to point out that the proof is surprisingly simple.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [21] A projection and contraction method for symmetric cone complementarity problem
    Liu, Sanyang
    Liu, Xiangjing
    Chen, Junfeng
    OPTIMIZATION, 2019, 68 (11) : 2191 - 2202
  • [22] A smoothing Newton method for symmetric cone complementarity problems
    Tang, Jia
    Ma, Changfeng
    OPTIMIZATION LETTERS, 2015, 9 (02) : 225 - 244
  • [23] Improved smoothing Newton methods for symmetric cone complementarity problems
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    OPTIMIZATION LETTERS, 2012, 6 (03) : 471 - 487
  • [24] A New Smoothing Newton Method for Symmetric Cone Complementarity Problems
    Liu, Lixia
    Liu, Sanyang
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 199 - 208
  • [25] Improved smoothing Newton methods for symmetric cone complementarity problems
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    Optimization Letters, 2012, 6 : 471 - 487
  • [26] Smoothing method for mathematical programs with symmetric cone complementarity constraints
    Yan, Tao
    Fukushima, Masao
    OPTIMIZATION, 2011, 60 (1-2) : 113 - 128
  • [27] A generalized smoothing Newton method for the symmetric cone complementarity problem
    Li, Yuan-Min
    Wei, Deyun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 335 - 345
  • [28] Lipschitz Continuity of the Solution Mapping of Symmetric Cone Complementarity Problems
    Miao, Xin-He
    Chen, Jein-Shan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [29] NEW SMOOTHING MERIT FUNCTION FOR SYMMETRIC CONE COMPLEMENTARITY PROBLEM
    Sun, Guo
    Zhang, Peng
    Yu, Liying
    Lin, Gui-Hua
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (04): : 577 - 593
  • [30] A new C-function for symmetric cone complementarity problems
    Tang, Jia
    Liu, Sanyang
    Ma, Changfeng
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 105 - 113