Reductive Decomposition of Solvents and Additives toward Solid-Electrolyte Interphase Formation in Lithium-Ion Battery

被引:40
|
作者
Wang, Yamin [1 ]
Liu, Yingchun [1 ]
Tu, Yaoquan [2 ]
Wang, Qi [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
[2] KTH Royal Inst Technol, Dept Theoret Chem & Biol, SE-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 17期
基金
中国国家自然科学基金;
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; REACTIVE FORCE-FIELD; FLUOROETHYLENE CARBONATE; SURFACE-CHEMISTRY; GRAPHITE; SILICON; PERFORMANCE; CAPACITY; LIQUID; ANODE;
D O I
10.1021/acs.jpcc.9b10535
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and durability of lithium-ion batteries. Here, we investigate the initial process of SEI formation through reactive force field-molecular dynamics (ReaxFF-MD) simulations and density functional theory (DFT) calculations. ReaxFF-MD is used as a simulation protocol to predict the evolution of SEI components, and products are obtained in good agreement with the experimental results. DFT calculations are then used to model the reaction center. We find that one-electron reduction induces the similar breaking of the C-O bond in solvent ethylene carbonate (EC) and additive fluoroethylene carbonate (FEC). When another electron is added, EC decomposition produces gas CO + alkylcarbonate or ethylene (C2H4) + carbonate (CO32-), whereas FEC decomposition generates lithium fluoride (LiF) and vinylene carbonate (VC) in addition to CO + alkylcarbonate. LiF and VC could also be regarded as important electrolyte additives to improve battery performance. The reduction on FEC moiety/molecule is more energetically favorable than that on the corresponding EC moiety/molecule. This knowledge on the decomposition products at the atomic scale well correlate with available experiments, and theory provides useful guidelines and structural motifs for interpretations of future SEI-related experiments.
引用
收藏
页码:9099 / 9108
页数:10
相关论文
共 50 条
  • [31] Modeling Solid-Electrolyte Interphase (SEI) Fracture: Coupled Mechanical/Chemical Degradation of the Lithium Ion Battery
    Deshpande, Rutooj D.
    Bernardi, Dawn M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : A461 - A474
  • [32] Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes
    Leung, Kevin
    Budzien, Joanne L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (25) : 6583 - 6586
  • [33] Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase
    Zheng, Jianhui
    Ju, Zhijin
    Zhang, Baolin
    Nai, Jianwei
    Liu, Tiefeng
    Liu, Yujing
    Xie, Qifan
    Zhang, Wenkui
    Wang, Yao
    Tao, Xinyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10251 - 10259
  • [34] In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries
    Alemu, Tibebu
    Pradanawati, Sylvia Ayu
    Chang, Shih-Chang
    Lin, Pin-Ling
    Kuo, Yu-Lin
    Quoc-Thai Pham
    Su, Chia-Hung
    Wang, Fu-Ming
    JOURNAL OF POWER SOURCES, 2018, 400 : 426 - 433
  • [35] Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field
    Yun, Kang-Seop
    Pai, Sung Jin
    Yeo, Byung Chul
    Lee, Kwang-Ryeol
    Kim, Sun-Jae
    Han, Sang Soo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13): : 2812 - 2818
  • [36] Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries
    Vorauer, T.
    Schoeggl, J.
    Sanadhya, S. G.
    Poluektov, M.
    Widanage, W. D.
    Figiel, L.
    Schaedler, S.
    Tordoff, B.
    Fuchsbichler, B.
    Koller, S.
    Brunner, R.
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [37] Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications
    Menkin, S.
    Golodnitsky, D.
    Peled, E.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) : 1789 - 1791
  • [38] Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries
    T. Vorauer
    J. Schöggl
    S. G. Sanadhya
    M. Poluektov
    W. D. Widanage
    L. Figiel
    S. Schädler
    B. Tordoff
    B. Fuchsbichler
    S. Koller
    R. Brunner
    Communications Materials, 4
  • [39] A Perspective on the Molecular Modeling of Electrolyte Decomposition Reactions for Solid Electrolyte Interphase Growth in Lithium-Ion Batteries
    Bin Jassar, Mohammed
    Michel, Carine
    Abada, Sara
    De Bruin, Theodorus
    Tant, Sylvain
    Nieto-Draghi, Carlos
    Steinmann, Stephan N.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [40] Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries
    Han, Young-Kyu
    Moon, Yeni
    Lee, Keonjoon
    Huh, Yun Suk
    CURRENT APPLIED PHYSICS, 2014, 14 (06) : 897 - 900