A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences

被引:5
|
作者
He, Jian [1 ]
Wu, Yanling [1 ]
Pu, Xuemei [1 ]
Li, Menglong [1 ]
Guo, Yanzhi [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
leukemia; protein phosphorylation site; protein primary sequences; machine-learning; deep-learning; transfer-learning; BACTERIAL; MODEL; LOGO;
D O I
10.3390/ijms23031741
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As one of the most important post-translational modifications (PTMs), phosphorylation refers to the binding of a phosphate group with amino acid residues like Ser (S), Thr (T) and Tyr (Y) thus resulting in diverse functions at the molecular level. Abnormal phosphorylation has been proved to be closely related with human diseases. To our knowledge, no research has been reported describing specific disease-associated phosphorylation sites prediction which is of great significance for comprehensive understanding of disease mechanism. In this work, focusing on three types of leukemia, we aim to develop a reliable leukemia-related phosphorylation site prediction models by combing deep convolutional neural network (CNN) with transfer-learning. CNN could automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of leukemia-related phosphorylation site prediction. With the largest dataset of myelogenous leukemia, the optimal models for S/T/Y phosphorylation sites give the AUC values of 0.8784, 0.8328 and 0.7716 respectively. When transferred learning on the small size datasets, the models for T-cell and lymphoid leukemia also give the promising performance by common sharing the optimal parameters. Compared with other five machine-learning methods, our CNN models reveal the superior performance. Finally, the leukemia-related pathogenesis analysis and distribution analysis on phosphorylated proteins along with K-means clustering analysis and position-specific conversation profiles on the phosphorylation site all indicate the strong practical feasibility of our easy-to-use CNN models.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Crop pest classification based on deep convolutional neural network and transfer learning
    Thenmozhi, K.
    Reddy, U. Srinivasulu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
  • [22] Image Splicing Detection based on Deep Convolutional Neural Network and Transfer Learning
    Das, Debjit
    Naskar, Ruchira
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [23] Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences
    Li, Hang
    Gong, Xiu-Jun
    Yu, Hua
    Zhou, Chang
    MOLECULES, 2018, 23 (08):
  • [24] Transfer learning based deep convolutional neural network model for pavement crack detection from images
    Jana, S.
    Thangam, S.
    Kishore, Anem
    Kumar, Venkata Sai
    Vandana, Saddapalli
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1209 - 1223
  • [25] Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach
    Comert, Zafer
    Kocamaz, Adnan Fatih
    SOFTWARE ENGINEERING AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 763 : 239 - 248
  • [26] Study on automatic lithology identification based on convolutional neural network and deep transfer learning
    Li, Shiliang
    Dong, Yuelong
    Zhang, Zhanrong
    Lin, Chengyuan
    Liu, Huaji
    Wang, Yafei
    Bian, Youyan
    Xiong, Feng
    Zhang, Guohua
    DISCOVER APPLIED SCIENCES, 2024, 6 (06)
  • [27] Unmanned Aerial Vehicles Identified Based on Transfer Learning of Deep Convolutional Neural Network
    Wang, Shaoran
    Shi, Qi
    Yang, Tian
    Li, Mengmeng
    Ding, Dazhi
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [28] Voice disorder classification using convolutional neural network based on deep transfer learning
    Peng, Xiangyu
    Xu, Huoyao
    Liu, Jie
    Wang, Junlang
    He, Chaoming
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [29] Voice disorder classification using convolutional neural network based on deep transfer learning
    Xiangyu Peng
    Huoyao Xu
    Jie Liu
    Junlang Wang
    Chaoming He
    Scientific Reports, 13
  • [30] Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
    Hasan, Md Mahibul
    Wang, Zhijie
    Hussain, Muhammad Ather Iqbal
    Fatima, Kaniz
    SENSORS, 2021, 21 (22)