Projective Modules, Idempotent Ideals and Intersection Theorems

被引:2
|
作者
Smith, Patrick F. [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
来源
ADVANCES IN RING THEORY | 2010年
关键词
Projective module; idempotent ideal; Noetherian ring; semiprime ring; group ring; polynomial ring; INTEGRAL GROUP-RINGS; NOETHERIAN RINGS; FINITE-GROUPS; LOCALIZATION; POWERS;
D O I
10.1007/978-3-0346-0286-0_20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the relationship between projective modules and idempotent ideals for group rings, polynomial rings and more general rings, giving a survey of known results, proving some new results and raising a number of questions. In particular, it is proved that if R is any ring, X a projective right R-module and A an ideal of R such that the R-module X/XA can be generated by a set of elements of cardinality N, for some infinite cardinal N, then X/XB can be generated by a set of elements of cardinality N, where B is the unique maximal idempotent ideal of R contained in A. A recurring theme is that of "intersection theorems" which give information about intersections of powers of ideals of the ring.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 50 条
  • [21] On residually S2 ideals and projective dimension one modules
    Corso, A
    Polini, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (05) : 1309 - 1315
  • [22] HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS
    AUSLANDER, M
    PLATZECK, MI
    TODOROV, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) : 667 - 692
  • [23] IDEMPOTENT IDEALS OF ORDERS, REPORT
    ZASSENHAUS, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A49 - A49
  • [24] IDEMPOTENT IDEALS IN PI RINGS
    SMALL, LW
    ROBSON, JC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 14 (OCT): : 120 - 122
  • [25] ON FULLY IDEMPOTENT MODULES
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    Smith, Patrick F.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2707 - 2722
  • [26] Dominant dimension and idempotent ideals
    Zhang, Jin
    Luo, Yanfeng
    JOURNAL OF ALGEBRA, 2020, 556 : 993 - 1017
  • [27] Some splitting theorems for local cohomology modules with respect to a pair of ideals
    Naal, Batoul
    Khashyarmanesh, Kazem
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (02)
  • [28] Vanishing theorems for Mather-Jacobian multiplier ideals on a Gorenstein projective variety
    Niu, Wenbo
    ADVANCES IN GEOMETRY, 2024, 24 (04) : 535 - 544
  • [29] IDEMPOTENT IDEALS IN PERFECT RINGS
    MICHLER, G
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (02): : 301 - &
  • [30] Almost projective modules and generalized projective modules
    Kikumasa, Isao
    Kuratomi, Yosuke
    Shibata, Yoshiharu
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (10) : 4494 - 4509