On Weighted Solutions to (partial derivative)over-bar-Equation in the Upper Half-Plane

被引:0
|
作者
Hayrapetyan, F., V [1 ,2 ]
Karapetyan, A. H. [1 ,2 ]
Karapetyan, A. A. [1 ,2 ]
机构
[1] Natl Acad Sci Republ Armenia, Inst Math, Yerevan, Armenia
[2] Yerevan State Univ, Yerevan, Armenia
关键词
(partial derivative)over-bar-equation; weighted spaces of smooth functions; DERIVATIVE-INTEGRAL REPRESENTATIONS;
D O I
10.3103/S1068362321050046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers the equation partial derivative f(w)/partial derivative(w) over bar = u(w) in the upper half-plane Pi(+). For a function u belonging to the class C-k(k = 1, 2, 3, ..., infinity) and the weighted space L-p(1 <= p < infinity) with a weight of type (Imw)(alpha)vertical bar w + i vertical bar(-gamma), w is an element of Pi(+), a family of solutions f(beta) depending on the complex parameter beta is constructed.
引用
收藏
页码:270 / 279
页数:10
相关论文
共 50 条
  • [41] HOLDER ESTIMATES FOR THE (partial derivative)over-bar-EQUATION ON SURFACES WITH SINGULARITIES OF THE TYPE E6 AND E7
    Acosta, F.
    Zeron, E. S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 73 - 86
  • [42] PATH INTEGRATION ON THE UPPER HALF-PLANE
    KUBO, R
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 755 - 759
  • [43] REPRODUCING KERNELS OF WEIGHTED POLY-BERGMAN SPACES ON THE UPPER HALF-PLANE
    Ortega, Josue Ramirez
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (02): : 345 - 356
  • [44] Weighted composition operators between Hardy and growth spaces on the upper half-plane
    Stevic, Stevo
    Sharma, Ajay K.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (10) : 4928 - 4934
  • [45] Singularities of Solutions to Quadratic Vector Equations on the Complex Upper Half-Plane
    Ajanki, Oskari
    Erdos, Laszlo
    Krueger, Torben
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (09) : 1672 - 1705
  • [46] Kadomtsev–Petviashvili Equation on the Half-Plane
    E. V. Gudkova
    I. T. Habibullin
    Theoretical and Mathematical Physics, 2004, 140 : 1086 - 1094
  • [47] The Helmholtz equation with impedance in a half-plane
    Durán, M
    Muga, I
    Nédélec, JC
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (07) : 483 - 488
  • [48] THE THEORY OF HARDY-SOBOLEV SPACES OVER THE UPPER HALF-PLANE
    Liu, Detian
    Li, Haichou
    Kou, Kit ian
    Qu, Wei
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (02): : 247 - 262
  • [49] THE THEORY OF HARDY-SOBOLEV SPACES OVER THE UPPER HALF-PLANE
    Liu, Detian
    Li, Haichou
    Kou, Kit Ian
    Qu, Wei
    Journal of Nonlinear and Variational Analysis, 2 (247-262):
  • [50] Method of fundamental solutions for a Cauchy problem of the Laplace equation in a half-plane
    Bo Chen
    Yao Sun
    Zibo Zhuang
    Boundary Value Problems, 2019