Periodic solutions for a class of non-autonomous Hamiltonian systems

被引:58
|
作者
Luan, SX [1 ]
Mao, A
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Qufu Normal Univ, Dept Math, Shandong 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; periodic solutions; Cerami condition; local linking;
D O I
10.1016/j.na.2005.01.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of nontrivial periodic solutions for a superlinear Hamiltonian system: (H) j u - A (t)u + &DEL; H(t, u)=0, u ε R-,(2N) t ε R. We prove an abstract result on the existence of a critical point for a real-valued functional on a Hilbert space via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under the Cerami-type condition instead of Palais-Smale-type condition. In addition, the main assumption here is weaker than the usual Ambrosetti-Rabinowitz-type condition: 0 < μ H(t, u) ≤ u • &DEL; H (t, u). | u| ≥ R > 0. This result extends theorems given by Li and Willem (J. Math. Anal. Appl. 189 (1995) 6-32) and Li and Szulkin (J. Differential Equations 112 (1994) 226-238). © 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1413 / 1426
页数:14
相关论文
共 50 条