Universal behavior in quantum chaotic dynamics

被引:12
|
作者
Xiong, H. W. [2 ]
Wu, B. [1 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
基金
美国国家科学基金会;
关键词
quantum chaos; Bose-Einstein condensate; billiard; BOSE-EINSTEIN CONDENSATION; SYSTEMS; GASES; EIGENFUNCTIONS; THERMALIZATION; FLUCTUATIONS;
D O I
10.1002/lapl.201010144
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discover numerically that a moving wave packet in a chaotic billiard will always evolve into a quantum state, whose density probability distribution is exponential. This exponential distribution is found to be universal for quantum chaotic systems with rigorous proof. In contrast, for the corresponding classical system, the distribution is Gaussian. We find that the quantum exponential distribution can smoothly change to the classical Gaussian distribution with coarse graining. This universal dynamical behavior can be observed experimentally with Bose-Einstein condensates. [GRAPHICS] Quantum "random" gas with exponential density distribution (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
引用
收藏
页码:398 / 404
页数:7
相关论文
共 50 条
  • [21] Quantum chaotic dynamics and random polynomials
    Bogomolny, E
    Bohigas, O
    Leboeuf, P
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) : 639 - 679
  • [22] Exposing hypersensitivity in quantum chaotic dynamics
    Grudka, Andrzej
    Kurzynski, Pawel
    Sajna, Adam S.
    Wojcik, Jan
    Wojcik, Antoni
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [23] Fractal dynamics in chaotic quantum transport
    Kotimaki, V.
    Rasanen, E.
    Hennig, H.
    Heller, E. J.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [24] Quantum mechanical entanglements with chaotic dynamics
    Tanaka, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5475 - 5497
  • [25] QUANTUM DYNAMICS IN A CHAOTIC SEPARATRIX LAYER
    BUBNER, N
    GRAHAM, R
    PHYSICAL REVIEW A, 1991, 43 (04): : 1783 - 1790
  • [26] INHIBITION OF MIXING IN CHAOTIC QUANTUM DYNAMICS
    HELMKAMP, BS
    BROWNE, DA
    PHYSICAL REVIEW E, 1995, 51 (03): : 1849 - 1857
  • [27] Chaotic behavior in quantum transport devices
    Harada, S
    Kida, N
    Morimoto, T
    Hemmi, M
    Naito, R
    Sasaki, T
    Aoki, N
    Harayama, T
    Bird, JP
    Ochiai, Y
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2005, 772 : 475 - 476
  • [28] Universal spin dynamics in quantum wires
    Fajardo, E. A.
    Zulicke, U.
    Winkler, R.
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [29] Universal simulation of Markovian quantum dynamics
    Bacon, Dave
    Childs, Andrew M.
    Chuang, Isaac L.
    Kempe, Julia
    Leung, Debbie W.
    Zhou, Xinlan
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06): : 1 - 062302
  • [30] Chaotic behavior in a model for grain dynamics
    Vasconcelos, GL
    Cunha-Jr, FV
    Veerman, JJP
    PHYSICA A, 2001, 295 (1-2): : 261 - 267