Fractal Dependence Graph in 2D Shapes Recognition

被引:0
|
作者
Wang, Xiaojun [1 ]
Qin, Jian [2 ,3 ]
机构
[1] Shaanxi Fenghuo Commun Grp Co Ltd, Baoji, Shannxi, Peoples R China
[2] Postdoctoral Stat Shaanxi Fenghuo Commun, Shannxi, Peoples R China
[3] Chongqing Univ, Dept Commun Engn, Chongqing, Peoples R China
关键词
shape recognition; fractals dependence graph; pattern recognition;
D O I
10.4028/www.scientific.net/AMM.143-144.715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fractal geometry is an useful approach in pattern recognition. Many fractal recognition methods use global analysis of the shape. In this paper we present a new fractal recognition method based on a dependence graph obtained from the PIFS. Moreover, this method uses local analysis of the shape which improves the recognition rate. The recognition algorithms have been tested to provide a feasible classification of the possible errors present in our similar object images datebase.
引用
收藏
页码:715 / +
页数:2
相关论文
共 50 条
  • [41] 2D fractal pattern in fullerene doped polymer
    Gao, HJ
    Xue, ZQ
    Wu, QD
    Pang, SJ
    SOLID STATE COMMUNICATIONS, 1996, 97 (07) : 579 - 582
  • [42] FRACTAL STRUCTURE OF 2D - QUANTUM-GRAVITY
    KNIZHNIK, VG
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    MODERN PHYSICS LETTERS A, 1988, 3 (08) : 819 - 826
  • [43] TOPOLOGICAL MODELS OF 2D FRACTAL CELLULAR STRUCTURES
    LECAER, G
    DELANNAY, R
    JOURNAL DE PHYSIQUE I, 1995, 5 (11): : 1417 - 1429
  • [44] On problem of recognition of pre-fractal graph
    Naimanova, I. Kh.
    Kochkarov, A. M.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2007, (01): : 194 - 196
  • [45] CREATING 3D DESIGNS FROM 2D SHAPES
    不详
    MACHINE DESIGN, 1985, 57 (06) : 148 - 148
  • [46] Fractal Construction Method of 2D Road Roughness
    Zhang B.
    Wang H.
    Zhang Z.
    Cheng M.
    Binggong Xuebao/Acta Armamentarii, 2020, 41 (12): : 2389 - 2396
  • [47] 2D fractal modeling based on L - systems
    Hu, Xuelong
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 1996, 20 (04):
  • [48] Scaling analysis of 2D fractal cellular structures
    Schliecker, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01): : 25 - 36
  • [49] BABY UNIVERSES AND FRACTAL STRUCTURE OF 2D GRAVITY
    THORLEIFSSON, G
    NUCLEAR PHYSICS B, 1994, : 742 - 744
  • [50] On 2D generalization of Higuchi's fractal dimension
    Spasic, Sladjana
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 179 - 187