A MODEL EXPERIMENT OF A DOUBLE-CONE TARGET USING A GAP TARGET

被引:1
|
作者
Sakawa, Y. [1 ]
Nakamura, H. [1 ]
Oshima, S. [1 ]
Hatakeyama, M. [2 ]
Kageiwa, N. [2 ]
Hino, S. [2 ]
Tanimoto, S. [2 ]
Tanabe, M. [2 ]
Habara, H. [2 ]
Homma, H. [1 ]
Norimatsu, T. [1 ]
Jitsuno, T. [1 ]
Cai, H. [1 ]
Zhou, W. [2 ]
Johzaki, T. [1 ]
Sunahara, A. [3 ]
Nagatomo, H. [1 ]
Nishimura, H. [1 ]
Tanaka, K. A. [1 ,2 ]
Mima, K. [1 ]
Azechi, H. [1 ]
机构
[1] Osaka Univ, Inst Laser Engn, 2-6 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[3] Inst Laser Technol, Suita, Osaka 5650871, Japan
来源
SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4 | 2010年 / 244卷
关键词
D O I
10.1088/1742-6596/244/4/042012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have conducted preliminary experiments to prove the vacuum-shielding effect using an Al-Cu double-foil (both Al and Cu foils are 1 mm x 1 mm x 10 mu mt) target with a vacuum-gap. Particle-in-cell simulation results have shown that the double-cone confines the electrons for hundreds of femtoseconds by the sheath electric field inside the vacuum-gap [ T. Nakamura, et al., Phys. Plasmas 14, 103105 (2007)]. Cu-K alpha intensity decreased with the vacuum-gap, i.e., the number of fast electrons that reached the Cu foil decreased with the gap. In the stack measurement, the number of electrons detected in the target surface direction increased with the gap. These results indicate that when the double-cone target is used, fast electrons created by an ignition laser can be reflected from the vacuum-gap, move along the cone surface, and be transferred towards the cone tip.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Numerical and experimental investigation of double-cone shock interactions
    Wright, MJ
    Sinha, K
    Olejniczak, J
    Candler, GV
    Magruder, TD
    Smits, AJ
    AIAA JOURNAL, 2000, 38 (12) : 2268 - 2276
  • [22] Numerical and experimental investigation of double-cone shock interactions
    Wright, M.J.
    Sinha, K.
    Olejniczak, J.
    Candler, G.V.
    Magruder, T.D.
    Smits, A.J.
    1600, AIAA, Reston, VA, United States (38):
  • [23] Modelling and control of double-cone dielectric elastomer actuator
    Branz, F.
    Francesconi, A.
    SMART MATERIALS AND STRUCTURES, 2016, 25 (09)
  • [24] ROD TO DOUBLE-CONE TRANSMISSION IN THE RETINA OF THE TIGER SALAMANDER
    ATTWELL, D
    WERBLIN, FS
    WILSON, M
    WU, S
    JOURNAL OF PHYSIOLOGY-LONDON, 1981, 313 (APR): : P57 - P57
  • [25] Granular segregation in the double-cone blender: Transitions and mechanisms
    Alexander, AW
    Shinbrot, T
    Muzzio, FJ
    PHYSICS OF FLUIDS, 2001, 13 (03) : 578 - 587
  • [26] Effect of vibrational nonequilibrium on hypersonic double-cone experiments
    Nompelis, I
    Candler, GV
    Holden, MS
    AIAA JOURNAL, 2003, 41 (11) : 2162 - 2169
  • [27] Mixing dynamics in catalyst impregnation in double-cone blenders
    Chester, AW
    Kowalski, JA
    Coles, ME
    Muegge, EL
    Muzzio, FJ
    Brone, D
    POWDER TECHNOLOGY, 1999, 102 (01) : 85 - 94
  • [28] Study on the flow characteristics of double-cone in hypersonic flows
    Ai, Junding
    Huang, Wei
    Zhang, Jincheng
    Liu, Chaoyang
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 155
  • [29] MIXING POLYETHYLENE AND CARBON BLACK MASTERBATCH IN DOUBLE-CONE BLENDERS
    HILL, FP
    TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS AND THE CHEMICAL ENGINEER, 1965, 43 (01): : T10 - &
  • [30] Double-cone internal reflection as a basis for polarization detection in fish
    Laboratory of Sensory Physiology, Woods Hole, MA 02543, United States
    不详
    不详
    J Opt Soc Am A, 2 (349-358):