A new view on fuzzy hypermodules

被引:36
|
作者
Zhan, Jian Ming [1 ]
Davvaz, Bijan
Shum, K. P.
机构
[1] Hubei Inst Natl, Dept Math, Enshi 445000, Peoples R China
[2] Yazd Univ, Dept Math, Yazd, Iran
[3] Chinese Univ Hong Kong, Fac Sci, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
hypermodule; interval-valued; (alpha; beta)-fuzzy sub-hypermodule; (epsilon; epsilon Vq)-fuzzy sub-hypermodule; fuzzy logic; implication operator;
D O I
10.1007/s10114-007-0951-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the relationship between the fuzzy sets and the algebraic hyperstructures. In fact, this paper is a continuation of the ideas presented by Davvaz in (Fuzzy Sets Syst., 117: 477- 484, 2001) and Bhakat and Das in (Fuzzy Sets Syst., 80: 359-368, 1996). The concept of the quasicoincidence of a fuzzy interval value with an interval-valued fuzzy set is introduced and this is a natural generalization of the quasi-coincidence of a fuzzy point in fuzzy sets. By using this new idea, the concept of interval-valued (alpha, beta)-fuzzy sub-hypermodules of a hypermodule is defined. This newly defined interval-valued (alpha, beta)-fuzzy sub-hypermodule is a generalization of the usual fuzzy sub-hypermodule. We shall study such fuzzy sub-hypermodules and consider the implication-based interval-valued fuzzy sub-hypermodules of a hypermodule.
引用
收藏
页码:1345 / 1356
页数:12
相关论文
共 50 条
  • [21] Application of fuzzy sets and fuzzy soft sets in hypermodules
    R. Ameri
    M. Norouzi
    H. Hedayati
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 327 - 338
  • [22] ON (FUZZY) ISOMORPHISM THEOREMS OF SOFT Γ-HYPERMODULES
    Ma, Xueling
    Zhan, Jianming
    Leoreanu-Fotea, V.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (01): : 65 - 76
  • [23] Application Multi-Fuzzy Soft Sets in Hypermodules
    Kazanci, Osman
    Hoskova-Mayerova, Sarka
    Davvaz, Bijan
    MATHEMATICS, 2021, 9 (18)
  • [24] A new view of fuzzy hyperquasigroups
    Zhan, J.
    Davvaz, B.
    Shum, K. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2009, 20 (4-5) : 147 - 157
  • [25] A new approach to tensor product of hypermodules
    Mousavi, Seyed Shahin
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2022, 16 (01) : 29 - 58
  • [26] Fuzzy (m, n)-ary sub-hypermodules (with thresholds)
    Davvaz, B.
    Corsini, P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2012, 23 (01) : 1 - 8
  • [27] Generalized quasi-coincidence in fuzzy sub-hypermodules
    1600, Forum-Editrice Universitaria Udinese SRL
  • [28] Some new results on soft hypermodules
    Wang, Jinyan
    Zhan, Jianming
    Gu, Wenxiang
    ARS COMBINATORIA, 2012, 104 : 289 - 306
  • [29] GENERALIZED QUASI-COINCIDENCE IN FUZZY SUB-HYPERMODULES
    Ameri, R.
    Hedayati, H.
    Norouzi, M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (30): : 215 - 232
  • [30] A NEW VIEW OF FUZZY GAMMA RINGS
    Ozturk, Mehmet Ali
    Jun, Young Bae
    Yazarli, Hasret
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (03): : 365 - 378