The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients

被引:6
|
作者
Kashou, Anthony H. [1 ]
Noseworthy, Peter A. [2 ,3 ]
Lopez-Jimenez, Francisco [2 ]
Attia, Zachi I. [2 ]
Kapa, Suraj [2 ]
Friedman, Paul A. [2 ]
Jentzer, Jacob C. [2 ,4 ,5 ,6 ]
机构
[1] Mayo Clin, Dept Internal Med, Rochester, MN USA
[2] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[3] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN USA
[4] Mayo Clin, Dept Internal Med, Div Pulm & Crit Care Med, Rochester, MN 55901 USA
[5] Mayo Clin, Dept Internal Med, Div Pulm & Crit Care Med, Rochester, MN 55905 USA
[6] Mayo Clin, Dept Cardiovasc Med, Med, 200 First Street SW, Rochester, MN 55905 USA
关键词
Atrial fibrillation; Artificial intelligence; Electrocardiogram; Cardiac intensive care unit; Left ventricular systolic dysfunction; Echocardiography;
D O I
10.1016/j.ijcard.2021.07.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The presence of left ventricular systolic dysfunction (LVSD) alters clinical management and prognosis in most acute and chronic cardiovascular conditions. While transthoracic echocardiography (TTE) remains the most common diagnostic tool to screen for LVSD, it is operator-dependent, time-consuming, effort-intensive, and relatively expensive. Recent work has demonstrated the ability of an artificial intelligence-augment ECG (AIECG) model to accurately predict LVSD in critical intensive care unit (CICU) patients. We demonstrate that the AI-ECG algorithm can maintain its performance in these patients with and without AF despite their clinical differences. An AI-ECG algorithm can serve as a non-invasive, inexpensive, and rapid screening tool for early detection of LVSD in resource-limited settings, and potentially expedite clinical decision making and guidelinedirected therapies in the acute care setting.
引用
收藏
页码:54 / 55
页数:2
相关论文
共 50 条
  • [21] Artificial intelligence-enabled electrocardiographic algorithm for the detection of left ventricular dysfunction in emergency department patients undergoing high -sensitivity cardiac troponin T
    De Michieli, L.
    Knott, J.
    Attia, Z.
    Ola, O.
    Akula, A.
    Mehta, R.
    Dworak, M.
    Lobo, R.
    Hodge, D.
    Tak, T.
    Cagin, C.
    Friedman, R.
    Gulati, R.
    Jatfe, A.
    Sandoval, Y.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1330 - 1330
  • [22] Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs
    Anjewierden, Scott
    O'Sullivan, Donnchadh
    Mangold, Kathryn E.
    Greason, Grace
    Attia, Itzhak Zachi
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Asirvatham, Samuel J.
    Anderson, Jason
    Eidem, Benjamin W.
    Johnson, Jonathan N.
    Prakash, Shisheer Havangi
    Niaz, Talha
    Madhavan, Malini
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (21):
  • [23] Mortality Risk Stratification Using Artificial Intelligence Augmented Prediction of Serum Potassium in Cardiac Intensive Care Unit Patients
    Heinrich, Christopher
    Harmon, David
    Dillon, John J.
    Kashani, Kianoush
    Attia, Zachi
    Friedman, Paul
    Jentzer, Jacob C.
    CIRCULATION, 2023, 148
  • [24] Parasympathetic Effect On Cardiac Electrophysiology Is Preserved At Rest In Patients With Depressed Left Ventricular Ejection Fraction
    Chicos, Alexandru B.
    Kannankeril, Prince
    Kadish, Alan H.
    Goldberger, Jeffrey J.
    CIRCULATION, 2008, 118 (18) : S648 - S649
  • [25] Factors associated with abnormal left ventricular ejection fraction (decreased or increased) in patients with sepsis in the intensive care unit
    Shin, Dong Geum
    Kang, Min-Kyung
    Seo, Yu Bin
    Choi, Jaehuk
    Choi, Seon Yong
    Choi, Seonghoon
    Cho, Jung Rae
    Lee, Namho
    PLOS ONE, 2020, 15 (03):
  • [26] Artificial Intelligence Assessment of Diastolic Dysfunction by Electrocardiogram: Outcomes in Cardiac Intensive Care Unit Patients
    Hillerson, Dustin
    Jentzer, Jacob
    Lee, Eunjung
    Attia, Zachi
    Kane, Garvan
    Lopez-Jimenez, Francisco
    Noseworthy, Peter
    Friedman, Paul
    Oh, Jae
    CIRCULATION, 2024, 150
  • [27] Point-of-care artificial intelligence-enabled ECG for dyskalemia: a retrospective cohort analysis for accuracy and outcome prediction
    Lin, Chin
    Chau, Tom
    Lin, Chin-Sheng
    Shang, Hung-Sheng
    Fang, Wen-Hui
    Lee, Ding-Jie
    Lee, Chia-Cheng
    Tsai, Shi-Hung
    Wang, Chih-Hung
    Lin, Shih-Hua
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [28] Point-of-care artificial intelligence-enabled ECG for dyskalemia: a retrospective cohort analysis for accuracy and outcome prediction
    Chin Lin
    Tom Chau
    Chin-Sheng Lin
    Hung-Sheng Shang
    Wen-Hui Fang
    Ding-Jie Lee
    Chia-Cheng Lee
    Shi-Hung Tsai
    Chih-Hung Wang
    Shih-Hua Lin
    npj Digital Medicine, 5
  • [29] Effect of Corticosteroid Dose and Duration on Left Ventricular Ejection Fraction in Cardiac Sarcoidosis
    Wand, Alison L.
    Okada, David R.
    Griffin, Jan M.
    Kasper, Edward K.
    Chen, Edward
    Gilotra, Nisha A.
    JOURNAL OF CARDIAC FAILURE, 2019, 25 (08) : S69 - S69
  • [30] Artificial intelligence-enabled detection and phenotyping of left ventricular hypertrophy on real-world point-of-care cardiac ultrasonography and its implications for patient outcomes
    Oikonomou, Evangelos
    Holste, Gregory
    Coppi, Andreas
    Baloescu, Cristiana
    McNamara, Robert
    Khera, Rohan
    CIRCULATION, 2024, 150