Densely Semantically Aligned Person Re-Identification

被引:215
|
作者
Zhang, Zhizheng [1 ,3 ]
Lan, Cuiling [2 ]
Zeng, Wenjun [2 ]
Chen, Zhibo [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] MSRA, Beijing, Peoples R China
关键词
D O I
10.1109/CVPR.2019.00076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a densely semantically aligned person re-identification framework. It fundamentally addresses the body misalignment problem caused by pose/viewpoint variations, imperfect person detection, occlusion, etc. By leveraging the estimation of the dense semantics of a person image, we construct a set of densely semantically aligned part images (DSAP-images), where the same spatial positions have the same semantics across different images. We design a two-stream network that consists of a main full image stream (MF-Stream) and a densely semantically-aligned guiding stream (DSAG-Stream). The DSAG-Stream, with the DSAP-images as input, acts as a regulator to guide the MF-Stream to learn densely semantically aligned features from the original image. In the inference, the DSAG-Stream is discarded and only the MF-Stream is needed, which makes the inference system computationally efficient and robust. To the best of our knowledge, we are the first to make use of fine grained semantics to address the mis-alignment problems for re-ID. Our method achieves rank-1 accuracy of 78.9% (new protocol) on the CUHK03 dataset, 90.4% on the CUHK01 dataset, and 95.7% on the Market1501 dataset, outperforming state-of-the-art methods.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [41] An Improved Method for Person Re-identification
    Jiang, Han
    Yang, Xinmei
    Li, Yaobin
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING (ICGSP 2018), 2018, : 46 - 50
  • [42] Review of person re-identification techniques
    Saghafi, Mohammad Ali
    Hussain, Aini
    Zaman, Halimah Badioze
    Saad, Mohamad Hanif Md
    IET COMPUTER VISION, 2014, 8 (06) : 455 - 474
  • [43] Identity Adaptation for Person Re-Identification
    Ke, Qiuhong
    Bennamoun, Mohammed
    Rahmani, Hossein
    An, Senjian
    Sohel, Ferdous
    Boussaid, Farid
    IEEE ACCESS, 2018, 6 : 48147 - 48155
  • [44] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782
  • [45] Pose Transferrable Person Re-Identification
    Liu, Jinxian
    Ni, Bingbing
    Yan, Yichao
    Zhou, Peng
    Cheng, Shuo
    Hu, Jianguo
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4099 - 4108
  • [46] Evaluating Features for Person Re-Identification
    Wang, Jiabao
    Li, Hang
    Li, Yang
    Xu, Yulong
    Miao, Zhuang
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 214 - 219
  • [47] Person Re-Identification in Aerial Imagery
    Zhang, Shizhou
    Zhang, Qi
    Yang, Yifei
    Wei, Xing
    Wang, Peng
    Jiao, Bingliang
    Zhang, Yanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 281 - 291
  • [48] Exploiting prunability for person re-identification
    Hugo Masson
    Amran Bhuiyan
    Le Thanh Nguyen-Meidine
    Mehrsan Javan
    Parthipan Siva
    Ismail Ben Ayed
    Eric Granger
    EURASIP Journal on Image and Video Processing, 2021
  • [49] Cluster Loss for Person Re-Identification
    Alex, Doney
    Sami, Zishan
    Banerjee, Sumandeep
    Panda, Subrat
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [50] PERSON RE-IDENTIFICATION BY MANIFOLD RANKING
    Loy, Chen Change
    Liu, Chunxiao
    Gong, Shaogang
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3567 - 3571