Conservation laws of some classes of models involving oscillons

被引:1
|
作者
Aljohani, A. F. [1 ]
Kara, A. H. [2 ,3 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, Tabuk, Saudi Arabia
[2] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
关键词
Conservation laws; Oscillons; SYMMETRIES;
D O I
10.1016/j.physleta.2019.126229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct and analyse the conservation laws (conserved densities) of two models that lead to oscillons; viz., in a system of two nonlinearly coupled scalar fields in (1+1)-dimensional spatiotemporal continuum and analysed a particular class of sixth-degree polynomial potentials and one in which an interaction of 'two one-dimensional spatial vector oscillons in a trap with significant transverse dimensions' occurs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Some models of solitary wave propagation in optical fibers involving Kerr and parabolic laws
    G. Boakye
    K. Hosseini
    E. Hinçal
    S. Sirisubtawee
    M. S. Osman
    Optical and Quantum Electronics, 2024, 56
  • [22] Conservation laws, symmetry reductions, and exact solutions of some Keller-Segel models
    Zhang, Lihua
    Xu, Fengsheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [23] Symmetry analysis and conservation laws for several classes of hydrodynamic equations
    Liu, Mingshuo
    Zhang, Lijun
    Fang, Yong
    Zhang, Yong
    Dong, Huanhe
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [24] RIEMANN PROBLEM FOR CERTAIN CLASSES OF HYPERBOLIC SYSTEMS OF CONSERVATION LAWS
    DAFERMOS, CM
    DIPERNA, RJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 20 (01) : 90 - 114
  • [25] CHARACTERIZATION OF SOME MATRIX CLASSES INVOLVING SOME SETS WITH SPEED
    Das, S.
    Dutta, H.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 813 - 821
  • [26] On symmetries and conservation laws of a Gardner equation involving arbitrary functions
    de la Rosa, R.
    Gandarias, M. L.
    Bruzon, M. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 : 125 - 134
  • [27] The conservation laws of some discrete soliton systems
    Zhang, DJ
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2002, 14 (04) : 573 - 579
  • [28] Microscopic conservation laws for integrable lattice models
    Harrop-Griffiths, Benjamin
    Killip, Rowan
    Visan, Monica
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 477 - 504
  • [29] Conservation laws for Lotka-Volterra models
    Schimming, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (17) : 1517 - 1528
  • [30] CONSERVATION-LAWS AND NUCLEAR TRANSPORT MODELS
    GALE, C
    DASGUPTA, S
    PHYSICAL REVIEW C, 1990, 42 (04): : 1577 - 1581