Fredholm property of a family of operators on the five-dimensional Heisenberg group

被引:0
|
作者
Shakarchi, R [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1016/S0001-8708(03)00008-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An expansion in Euclidean spherical harmonics on the ball in the Heisenberg group of dimension five decomposes the Dirichlet problem for the Laplacian in an infinite number of two-dimensional problems. Fundamental solutions are obtained for each of the partial differential operators in these problems, thus reducing them further (via layer potentials) to one-dimensional integral equations. The main result in this article states that the corresponding integral operators are Fredholm in appropriate weighted L-2 spaces. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:391 / 425
页数:35
相关论文
共 50 条
  • [21] Invertibility and the Fredholm property of difference operators
    Baskakov, AG
    MATHEMATICAL NOTES, 2000, 67 (5-6) : 690 - 698
  • [22] Invertibility and the fredholm property of difference operators
    A. G. Baskakov
    Mathematical Notes, 2000, 67 : 690 - 698
  • [23] Spectral Properties of a Family of Minimal Tori of Revolution in the Five-dimensional Sphere
    Karpukhin, Mikhail
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02): : 285 - 296
  • [24] A five-dimensional modular variety
    Freitag, Eberhard
    Manni, Riccardo Salvati
    MANUSCRIPTA MATHEMATICA, 2008, 125 (04) : 495 - 500
  • [25] The width of five-dimensional prismatoids
    Matschke, Benjamin
    Santos, Francisco
    Weibel, Christophe
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 647 - 672
  • [26] Five-dimensional trinification improved
    Carone, CD
    Conroy, JM
    PHYSICS LETTERS B, 2005, 626 : 195 - 201
  • [27] Five-dimensional superfield supergravity
    Kuzenko, Sergei M.
    Tartaglino-Mazzucchelli, Gabriele
    PHYSICS LETTERS B, 2008, 661 (01) : 42 - 51
  • [28] Comment on five-dimensional geodesy
    Billyard, A
    Coley, A
    MODERN PHYSICS LETTERS A, 1997, 12 (29) : 2223 - 2226
  • [29] Five-dimensional Rindler spacetime
    McFarland, B
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (03) : 743 - 755
  • [30] A five-dimensional modular variety
    Eberhard Freitag
    Riccardo Salvati Manni
    manuscripta mathematica, 2008, 125 : 495 - 500