Non-Abelian gauge fields as components of gravity in the discretized Kaluza-Klein theory

被引:0
|
作者
Nguyen Ai Viet [1 ]
Pham Tien Du [2 ]
机构
[1] Hanoi Natl Univ, Informat Technol Inst, 144 Xuan Thuy Blvd, Hanoi, Vietnam
[2] Hanoi Natl Univ, Dept Phys, Coll Nat Sci, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Discretized Kaluza-Klein theory; non-Abelian gauge theories; extensions of general relativity; noncommutative geometry;
D O I
10.1142/S021773231750095X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Discretized Kaluza-Klein theory in M-2 x Z(2) spacetime can be constructed based on the concepts of noncommutative geometry. In this paper, we show that it is possible to incorporate the non-Abelian gauge fields in this framework. The generalized Hilbert-Einstein action is gauge invariant only in two cases. In the first case, the gauge group must be Abelian on one sheet of spacetime and non-Abelian on the other one. In the second case, the gauge group must be the same on two sheets of spacetime. Actually, the theories of electroweak and strong interactions can fit into these two cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Kaluza-Klein theory for teleparallel gravity
    Geng, Chao-Qiang
    Lai, Chang
    Luo, Ling-Wei
    Tseng, Huan-Hsin
    PHYSICS LETTERS B, 2014, 737 : 248 - 250
  • [22] Fermion fields in the (non)symmetric Kaluza-Klein theory
    Kalinowski, M. W.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (05) : 529 - 554
  • [23] Localization of Kaluza-Klein gauge fields on a brane
    Neronov, A
    PHYSICAL REVIEW D, 2001, 64 (04):
  • [24] The non-Abelian Weyl-Yang-Kaluza-Klein gravity model
    Kuyrukcu, Halil
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (06) : 1 - 22
  • [25] KALUZA-KLEIN APPROACH TO THE MOTION OF NON-ABELIAN CHARGED-PARTICLES WITH SPIN
    HARNAD, J
    PARE, JP
    CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (08) : 1427 - 1444
  • [26] Gauge conditions in modern Kaluza-Klein theory
    Sajko, WN
    Wesson, PS
    Liu, HY
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 2193 - 2200
  • [27] Gauge theory of Kaluza-Klein and winding modes
    Hohm, Olaf
    Samtleben, Henning
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [28] Kaluza-Klein gravity
    Overduin, JM
    Wesson, PS
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 283 (5-6): : 303 - 378
  • [29] Decay of magnetic fields in Kaluza-Klein theory
    Dowker, F
    Gauntlett, JP
    Gibbons, GW
    Horowitz, GT
    PHYSICAL REVIEW D, 1995, 52 (12): : 6929 - 6940
  • [30] Nonlinear Kaluza-Klein theory for dual fields
    Godazgar, Hadi
    Godazgar, Mahdi
    Nicolai, Hermann
    PHYSICAL REVIEW D, 2013, 88 (12):