Resonant 1:2 double Hopf bifurcation in an oscillator with delayed feedback

被引:5
|
作者
Gentile, F. S. [1 ]
Itovich, G. R. [2 ]
Moiola, J. L. [3 ]
机构
[1] Univ Nacl Sur, Dept Matemat, IIIE, UNS CONICET, B8000CPB, Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Rio Negro, Escuela Prod Tecnol & Medio Ambiente, Sede Alto Valle, R8336ATG, Villa Regina, Argentina
[3] Univ Nacl Sur, Dept Ingn Elect & Comp, IIIE, UNS CONICET, B8000CPB, Bahia Blanca, Buenos Aires, Argentina
关键词
Time-delay systems; Graphical Hopf theorem; 1:2 resonance; SYSTEMS;
D O I
10.1007/s11071-017-3980-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, the dynamics of an oscillator with delayed feedback is analyzed. It is found that for certain values of the parameters, the system exhibits a phenomenon known as double Hopf bifurcation with 1:2 resonance. This singularity provokes the interaction between two oscillatory solutions, one of frequency and the other with frequency . By using the graphical Hopf bifurcation theorem, the system dynamics in a neighborhood of this singularity is explored. Also, with the aid of the package DDE-Biftool, some global bifurcations are detected in order to provide a better understanding of the whole scenario.
引用
收藏
页码:1779 / 1789
页数:11
相关论文
共 50 条
  • [41] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Rui Yang
    Yahong Peng
    Yongli Song
    Nonlinear Dynamics, 2013, 73 : 737 - 749
  • [42] Control by time delayed feedback near a Hopf bifurcation point
    Lunel, Sjoerd M. Verduyn
    de Wolff, Babette A. J.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (91) : 1 - 23
  • [43] Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation
    Pyragas, K
    Pyragas, V
    Benner, H
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [44] Bifurcation control for a Duffing oscillator with delayed velocity feedback
    Xu C.-J.
    Wu Y.-S.
    International Journal of Automation and Computing, 2016, 13 (6) : 596 - 606
  • [45] Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback
    Wen, Shao-Fang
    Chen, Ju-Feng
    Guo, Shu-Qi
    SHOCK AND VIBRATION, 2018, 2018
  • [46] Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback
    Zhang Li-Sen
    Cai Li
    Feng Chao-Wen
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [47] Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control
    Ma, Suqi
    Lu, Qishao
    Feng, Zhaosheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 993 - 1007
  • [48] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Yang, Rui
    Peng, Yahong
    Song, Yongli
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 737 - 749
  • [49] An Energy Analysis of the Local Dynamics of a Delayed Oscillator Near a Hopf Bifurcation
    Z. H. Wang
    H. Y. Hu
    Nonlinear Dynamics, 2006, 46 : 149 - 159
  • [50] An energy analysis of the local dynamics of a delayed oscillator near a Hopf bifurcation
    Wang, Z. H.
    Hu, H. Y.
    NONLINEAR DYNAMICS, 2006, 46 (1-2) : 149 - 159