The effect of confinement on the flow and turbulent heat transfer in a mist impinging jet

被引:23
|
作者
Pakhomov, M. A. [1 ]
Terekhov, V. I. [1 ]
机构
[1] Russian Acad Sci, SS Kutateladze Inst Thermophys, Lab Thermal & Gas Dynam, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Impinging mist jet; Effect of confinement; Numerical modeling; Droplets evaporation; AIR-JET; IMPINGEMENT; MODEL; GAS; PIPE;
D O I
10.1016/j.ijheatmasstransfer.2011.05.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
Numerical study of the effect of confinement on a flow structure and heat transfer in an impinging mist jets with low mass fraction of droplets (M-L1 <= 1%) were presented. The turbulent mist jet is issued from a pipe and strikes into the center of the flat heated plate. Mathematical model is based on the steady-state RANS equations for the two-phase flow in Euler/Euler approach. Predictions were performed for the distances between the nozzle and the target plate x/(2R) = 0.5-10 and the initial droplets size (d(1) = 5-100 mu m) at the varied Reynolds number based on the nozzle diameter, Re = (1.3-8) x 10(4). Addition of droplets causes significant increase of heat transfer intensity in the vicinity of the jet stagnation point compared with the one-phase air impinging jet. The presence of the confinement upper surface decreases the wall friction and heat transfer rate, but the change of friction and heat transfer coefficients in the stagnation point is insignificant. The effect of confinement on the heat transfer is observed only in very small nozzle-to-plate distances (HI(2R)< 0.5) both in single-phase and mist impinging jets. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4266 / 4274
页数:9
相关论文
共 50 条
  • [41] Flow and Heat Transfer Features of an Impinging Annular Jet
    Terekhov, Victor
    Kalinina, Svetlana
    Sharov, Konstantin
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON JETS, WAKES AND SEPARATED FLOWS (ICJWSF2015), 2016, 185 : 19 - 27
  • [42] LES of flow and heat transfer in a round impinging jet
    Hadziabdic, M.
    Hanjalic, K.
    DIRECT AND LARGE-EDDY SIMULATION VI, 2006, 10 : 477 - +
  • [43] Turbulent flow and heat transfer characteristics of a two-dimensional oblique plate impinging jet
    Yoon, SH
    Kim, MK
    Lee, DH
    Kim, DS
    HEAT TRANSFER SCIENCE AND TECHNOLOGY 1996, 1996, : 187 - 193
  • [44] Heat transfer and flow structure of a multichannel impinging jet
    Fenot, M.
    Dorignac, E.
    Lalizel, G.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 90 : 323 - 338
  • [45] FLOW AND HEAT TRANSFER DUE TO IMPINGING ANNULAR JET
    Pal, Tarun Kanti
    Chattopadhyay, Himadri
    Mandal, Dipak Kumar
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2019, 46 (03) : 199 - 209
  • [46] Effect of inclination of twin impinging turbulent jets on flow and heat transfer characteristics
    Bentarzi, Fatiha
    Mataoui, Amina
    Rebay, Mourad
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 137 : 490 - 499
  • [47] Effect of driven frequency on flow and heat transfer of an impinging synthetic air jet
    Liu, Yao-Hsien
    Tsai, Shu-Yao
    Wang, Chi-Chuan
    APPLIED THERMAL ENGINEERING, 2015, 75 : 289 - 297
  • [48] Heat transfer from a flat plate to a turbulent axisymmetric impinging jet
    AshforthFrost, S
    Jambunathan, K
    Whitney, CF
    Ball, SJ
    INTERNATIONAL SEMINAR ON OPTICAL METHODS AND DATA PROCESSING IN HEAT AND FLUID FLOW, 1996, 1996 (03): : 71 - 79
  • [49] COMPUTATION OF HEAT TRANSFER OF A PLANE TURBULENT JET IMPINGING A MOVING PLATE
    Benmouhoub, Dahbia
    Mataoui, Amina
    THERMAL SCIENCE, 2014, 18 (04): : 1259 - 1271
  • [50] Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate
    Benmouhoub, Dahbia
    Mataoui, Amina
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (10):