The pseudocompactness of [0,1] is equivalent to the uniform continuity theorem

被引:13
|
作者
Bridges, Douglas [1 ]
Diener, Hannes [1 ]
机构
[1] Univ Canterbury, Dept Math & Stat, Christchurch, New Zealand
关键词
D O I
10.2178/jsl/1203350793
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove constructively that, in order to derive the uniform continuity theorem for pointwise continuous mappings from a compact metric space into a metric space, it is necessary and sufficient to prove any of a number of equivalent conditions, such as that every pointwise continuous mapping of [0, 1] into R is bounded. The proofs are analytic, making no use of, for example, fan-theoretic ideas.
引用
收藏
页码:1379 / 1384
页数:6
相关论文
共 50 条
  • [41] A theorem of Littlewood, Orlicz, and Grothendieck about sums in L1(0,1)
    Diestel, J
    Fourie, J
    Swart, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) : 376 - 394
  • [42] Decidable fan theorem and uniform continuity theorem with continuous moduli
    Fujiwara, Makoto
    Kawai, Tatsuji
    MATHEMATICAL LOGIC QUARTERLY, 2021, 67 (01) : 116 - 130
  • [43] (0,1)-MATRICES
    KHOMENKO, NP
    VYVROT, TM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (10): : 887 - 889
  • [44] De Finetti theorem and Borel states in [0,1]-valued algebraic logic
    Kuehr, Jan
    Mundici, Daniele
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 46 (03) : 605 - 616
  • [45] FFD BIN PACKING FOR ITEM SIZES WITH UNIFORM DISTRIBUTIONS ON [0,1/2]
    FLOYD, S
    KARP, RM
    ALGORITHMICA, 1991, 6 (02) : 222 - 240
  • [46] Approximation Theorem for New Modification of q-Bernstein Operators on (0,1)
    Wu, Yun-Shun
    Cheng, Wen-Tao
    Chen, Feng-Lin
    Zhou, Yong-Hui
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [47] (0,1)-MATRICES
    JAGERS, AA
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (06): : 505 - 506
  • [48] REPRESENTATION THEOREM FOR FINITE MARKOV CHAINS WHOSE STATES ARE SUBINTERVALS OF [0,1]
    SENGUPTA, SS
    CZARNY, P
    CHOW, R
    INFORMATION SCIENCES, 1971, 3 (01) : 51 - &
  • [49] Beurling's theorem for the Hardy operator on L2[0,1]
    Agler, Jim
    McCarthy, John E. E.
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 573 - 592
  • [50] ON THE RATE OF CONVERGENCE IN CENTRAL LIMIT-THEOREM IN THE SPACE D[0,1]
    PAULAUSKAS, VI
    IUKNIAVICHENE, DB
    DOKLADY AKADEMII NAUK SSSR, 1989, 307 (03): : 545 - 547