Stability of the quantum Sherrington-Kirkpatrick spin glass model

被引:16
|
作者
Young, A. P. [1 ]
机构
[1] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
关键词
TRANSVERSE FIELD; ORDER-PARAMETER; SOLVABLE MODEL; ROTORS;
D O I
10.1103/PhysRevE.96.032112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T = 0. If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum annealing in Sherrington-Kirkpatrick spin glass in presence of time-dependent longitudinal field
    Rajak, A.
    Chakrabarti, B. K.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (11) : 3769 - 3775
  • [42] Extremal optimization for Sherrington-Kirkpatrick spin glasses
    S. Boettcher
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 46 : 501 - 505
  • [43] ABOUT THE ORIGINAL SHERRINGTON-KIRKPATRICK MODEL OF SPIN-GLASSES
    TOUBOL, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 617 - 622
  • [44] SOME COMMENTS ON THE SHERRINGTON-KIRKPATRICK MODEL OF SPIN-GLASSES
    FROHLICH, J
    ZEGARLINSKI, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) : 553 - 566
  • [45] Supersymmetric complexity in the Sherrington-Kirkpatrick model
    Annibale, A
    Cavagna, A
    Giardina, I
    Parisi, G
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [46] Universality of superconcentration in the Sherrington-Kirkpatrick model
    Chen, Wei-Kuo
    Lam, Wai-Kit
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (02) : 267 - 286
  • [47] The Sherrington-Kirkpatrick model: a challenge for mathematicians
    Talagrand, M
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (02) : 109 - 176
  • [48] Fluctuations for the Bipartite Sherrington-Kirkpatrick Model
    Liu, Qun
    JOURNAL OF STATISTICAL PHYSICS, 2021, 184 (01)
  • [49] Variational Ansatz for the Ground State of the Quantum Sherrington-Kirkpatrick Model
    Schindler, Paul M.
    Guaita, Tommaso
    Shi, Tao
    Demler, Eugene
    Cirac, J. Ignacio
    PHYSICAL REVIEW LETTERS, 2022, 129 (22)
  • [50] Extremal optimization for Sherrington-Kirkpatrick spin glasses
    Boettcher, S
    EUROPEAN PHYSICAL JOURNAL B, 2005, 46 (04): : 501 - 505