The investigating on mechanical properties of engineered cementitious composites with high ductility and low cost

被引:5
|
作者
Ma, Kai [1 ]
Deng, Hanwen [1 ]
Guo, Xiaosheng [1 ]
Yin, Jian [1 ]
Zhao, Yibin [1 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Civil Engn, Changsha 410004, Peoples R China
来源
关键词
Engineered cementitious composites(ECC); Mechanical properties; Polyvinyl alcohol(PVA) fiber; High ductility; Low cost; MATRIX DESIGN; STEADY-STATE; LIMESTONE; STRENGTH; BEHAVIOR; CRACKING; POWDER; ECC;
D O I
10.1016/j.jobe.2022.104873
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The engineering application of engineered cementitious composites(ECC) has always been limited by its cost, which mainly due to the high price of imported PVA fibers. In order to balance the mechanical properties and cost of ECC, this study presents an engineered cementitious composites with high ductility and low cost. The compressive strength, uniaxial tensile strain and uniaxial tensile strength of this ECC were 21.33 MPa, 5.10%, and 2.93 MPa, respectively. The high ductility and low cost of this ECC are mainly attribute to the reasonable combination of four materials, including PVA fibers, fly ash, CaCO3 whiskers(CW) and nano-CaCO3(NC). The optimal mixing ratio of the four materials is that the content of PVA fiber is 1.3%(vol%), the mass ratio of fly ash to cement is 3.0, 1% CW(vol%), and 1% NC(wt.%). The average crack width and the maximum crack width on the surface of the tensile specimen prepared according to the optimal mixing ratio can be controlled at about 42 mu m and 100 mu m, respectively. This excellent crack control ability mainly comes from the crack inhibition effect of PVA fibers and CW. Compared to classic ECC-M45, the total value coefficient and total cost of the specimens prepared according to the optimal mixing ratio were 112.59% and 36% of that of ECC-M45, respectively. And the designed ECC with high ductility and low cost has the applicability of engineering application, which has been proved by comparison with the mechanical properties of a sprayable ultra high toughness cementitious composites (UHTCC) that has been applied in practical engineering cases.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] The investigating on mechanical properties of ultra-high strength and ultra-high ductility cementitious composites (UHS-UHDCC)
    Lei D.-Y.
    Guo L.-P.
    Li Y.
    Zheng Z.
    Liu J.-P.
    Li S.-C.
    Wang P.-G.
    Li C.-C.
    Mechtcherine V.
    Li Z.-H.
    Zeng D.-Z.
    Zhong B.-M.
    Journal of Building Engineering, 2021, 43
  • [12] Physical and Mechanical Properties of Ultra-High Strength and High Ductility Cementitious Composites
    Lei, Dong-Yi
    Guo, Li-Ping
    STRAIN-HARDENING CEMENT-BASED COMPOSITES, 2018, 15 : 211 - 220
  • [13] Mechanical Properties of Engineered Cementitious Composites with High Volume Fly Ash
    祝瑜
    杨英姿
    Journal of Wuhan University of Technology(Materials Science), 2009, (S1) : 166 - 170
  • [14] Mechanical Properties and Applications of Engineered Cementitious Composites (ECC)
    Zhao, Zhiqin
    Sun, Renjuan
    Feng, Ziqiang
    Wei, Shanshan
    Huang, Dawei
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING II, PTS 1-4, 2013, 405-408 : 2889 - +
  • [15] Test research on mechanical properties of engineered cementitious composites
    Wang, Shuaiyu
    Du, Hongxiu
    Lv, Jingjing
    Guo, Jun
    Yue, Guoyang
    Ma, Jie
    6TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2021, 647
  • [16] Experimental research on mechanical properties of engineered cementitious composites
    Li, Guoyou
    Huo, Liang
    Zhang, Tao
    Yao, Hang
    CONSTRUCTION MATERIALS AND STRUCTURES, 2014, : 189 - 195
  • [17] Effect of expansive agent on mechanical properties and deformation behavior of high ductility cementitious composites
    Guo L.
    Chen B.
    Sun W.
    Zhang W.
    Chen Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2016, 44 (11): : 1609 - 1613
  • [18] Crack width control and mechanical properties of low carbon engineered cementitious composites (ECC)
    Hou, Mengjun
    Zhang, Duo
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 348
  • [19] Mechanical and thermal properties of green lightweight engineered cementitious composites
    Huang, Xiaoyan
    Ranade, Ravi
    Zhang, Qian
    Ni, Wen
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 48 : 954 - 960
  • [20] Dynamic mechanical properties of basalt fiber engineered cementitious composites
    Zhang N.
    Zhou J.
    Xu M.
    Li H.
    Ma G.
    Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (05):