Prime geodesic theorem via the explicit formula of Ψ for hyperbolic 3-manifolds

被引:10
|
作者
Nakasuji, M [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, Kanagawa 2238522, Japan
关键词
lower bound; prime geodesic theorem; explicit formula;
D O I
10.3792/pjaa.77.130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a lower bound for the error term of the prime geodesic theorem for hyperbolic 3-manifolds. Our result is Omega (+/-)(x(log log x)(1/3)/ log x). We also generalize Sarnak's upper bound O(x((5/3)+epsilon)) to compact manifolds.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [21] Hyperbolic 3-manifolds with geodesic boundary: Enumeration and volume calculation
    Mednykh A.D.
    Petronio C.
    Proceedings of the Steklov Institute of Mathematics, 2006, 252 (1) : 155 - 171
  • [22] AN ASYMPTOTIC FORMULA FOR THE ETA INVARIANTS OF HYPERBOLIC 3-MANIFOLDS
    MEYERHOFF, R
    NEUMANN, WD
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (01) : 28 - 46
  • [23] A covering theorem for hyperbolic 3-manifolds and its applications
    Canary, RD
    TOPOLOGY, 1996, 35 (03) : 751 - 778
  • [24] A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3-manifolds
    Baker, Mark
    Cooper, Daryl
    JOURNAL OF TOPOLOGY, 2008, 1 (03) : 603 - 642
  • [25] PRIME GEODESIC THEOREM IN THE 3-DIMENSIONAL HYPERBOLIC SPACE
    Balkanova, Olga
    Chatzakos, Dimitrios
    Cherubini, Giacomo
    Frolenkov, Dmitry
    Laaksonen, Niko
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (08) : 5355 - 5374
  • [26] The length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces
    Linowitz, Benjamin
    Meyer, Jeffrey S.
    Pollack, Paul
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 955 - 972
  • [27] A simplicial formula for the eta-invariant of hyperbolic 3-manifolds
    Ouyang, MQ
    TOPOLOGY, 1997, 36 (02) : 411 - 421
  • [28] Spectral Bounds on Hyperbolic 3-Manifolds: Associativity and the Trace Formula
    Bonifacio, James
    Mazac, Dalimil
    Pal, Sridip
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (03)
  • [29] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [30] The curve complex and covers via hyperbolic 3-manifolds
    Robert Tang
    Geometriae Dedicata, 2012, 161 : 233 - 237