Dynamically Transformed Instance Normalization Network for Generalizable Person Re-Identification

被引:30
|
作者
Jiao, Bingliang [1 ,2 ,3 ,5 ]
Liu, Lingqiao [4 ]
Gao, Liying [1 ,2 ,3 ]
Lin, Guosheng [5 ]
Yang, Lu [1 ,2 ,3 ]
Zhang, Shizhou [1 ,3 ]
Wang, Peng [1 ,2 ,3 ]
Zhang, Yanning [1 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[2] Northwestern Polytech Univ, Ningbo Inst, Xian, Peoples R China
[3] Natl Engn Lab Integrated Aerosp Ground Ocean, Xian, Peoples R China
[4] Univ Adelaide, Adelaide, SA, Australia
[5] Nanyang Technol Univ, Singapore, Singapore
来源
基金
新加坡国家研究基金会; 国家重点研发计划; 中国国家自然科学基金;
关键词
Person re-identification; Domain generalization; Instance Normalization; Dynamic convolution;
D O I
10.1007/978-3-031-19781-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing person re-identification methods often suffer significant performance degradation on unseen domains, which fuels interest in domain generalizable person re-identification (DG-PReID). As an effective technology to alleviate domain variance, the Instance Normalization (IN) has been widely employed in many existing works. However, IN also suffers from the limitation of eliminating discriminative patterns that might be useful for a particular domain or instance. In this work, we propose a new normalization scheme called Dynamically Transformed Instance Normalization (DTIN) to alleviate the drawback of IN. Our idea is to employ dynamic convolution to allow the unnormalized feature to control the transformation of the normalized features into new representations. In this way, we can ensure the network has sufficient flexibility to strike the right balance between eliminating irrelevant domain-specific features and adapting to individual domains or instances. We further utilize a multi-task learning strategy to train the model, ensuring it can adaptively produce discriminative feature representations for an arbitrary domain. Our results show a great domain generalization capability and achieve state-of-the-art performance on three mainstream DG-PReID settings.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 50 条
  • [41] Domain-Class Correlation Decomposition for Generalizable Person Re-Identification
    Yang, Kaiwen
    Tian, Xinmei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3386 - 3396
  • [42] CLUSTER-BASED DISTRIBUTION ALIGNMENT FOR GENERALIZABLE PERSON RE-IDENTIFICATION
    Zhu, Chengzhang
    Chang, Zhe
    Xiao, Yalong
    Zou, Beiji
    Li, Bozhou
    Liu, Shu
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [43] Generalizable Person Re-identification with Relevance-aware Mixture of Experts
    Dai, Yongxing
    Li, Xiaotong
    Liu, Jun
    Tong, Zekun
    Duan, Ling-Yu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16140 - 16149
  • [44] Adaptive Cross-domain Learning for Generalizable Person Re-identification
    Zhang, Pengyi
    Dou, Huanzhang
    Yu, Yunlong
    Li, Xi
    COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 215 - 232
  • [45] Multi-Instance Convolutional Neural Network for multi-shot person re-identification
    Liu, Xiaokai
    Bi, Sheng
    Ma, Xiaorui
    Wang, Jie
    NEUROCOMPUTING, 2019, 337 : 303 - 314
  • [46] Bidirectional Interaction Network for Person Re-Identification
    Chen, Xiumei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1935 - 1948
  • [47] Global Correlative Network for Person re-identification
    Xie, Gengsheng
    Wen, Xianbin
    Yuan, Liming
    Xu, Haixia
    Liu, Zhanlu
    NEUROCOMPUTING, 2022, 469 : 298 - 309
  • [48] CASCADE ATTENTION NETWORK FOR PERSON RE-IDENTIFICATION
    Guo, Haiyun
    Wu, Huiyao
    Zhao, Chaoyang
    Zhang, Huichen
    Wang, Jinqiao
    Lu, Hanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2264 - 2268
  • [49] Dynamic Weighting Network for Person Re-Identification
    Li, Guang
    Liu, Peng
    Cao, Xiaofan
    Liu, Chunguang
    SENSORS, 2023, 23 (12)
  • [50] Adaptive receptive network for person re-identification
    Wang S.
    Ji P.
    Zhang Y.-Z.
    Zhu S.-D.
    Bao J.-N.
    Kongzhi yu Juece/Control and Decision, 2021, 37 (01): : 119 - 126