WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators

被引:3
|
作者
Papamikos, Georgios [1 ]
Robnik, Marko [1 ]
机构
[1] Univ Maribor, CAMTP, SI-2000 Maribor, Slovenia
关键词
ADIABATIC INVARIANTS; ENERGY EVOLUTION;
D O I
10.1088/1751-8113/45/1/015206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a simple WKB-like approach to obtain approximate analytic solutions to a certain class of time-dependent nonlinear 1D Hamiltonian oscillators. The case of homogeneous power-law potentials is solved explicitly in a closed form in the leading order. The accuracy of the approximation is surprisingly good and we illustrate it in the case of the quartic oscillator.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Complex trajectory method in time-dependent WKB
    Goldfarb, Yair
    Schiff, Jeremy
    Tannor, David J.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (16):
  • [22] WKB PROPERTIES OF THE TIME-DEPENDENT SCHRODINGER SYSTEM
    ORAIFEARTAIGH, L
    WIPF, A
    FOUNDATIONS OF PHYSICS, 1988, 18 (03) : 307 - 329
  • [23] TIME-DEPENDENT WKB EXPANSIONS FOR A CLASS OF PROPAGATORS
    BLINDER, SM
    CHEMICAL PHYSICS LETTERS, 1986, 123 (1-2) : 47 - 50
  • [24] TIME-DEPENDENT HARMONIC OSCILLATORS
    LANDOVITZ, LF
    LEVINE, AM
    SCHREIBER, WM
    PHYSICAL REVIEW A, 1979, 20 (03): : 1162 - 1168
  • [25] SU(1,1) Lie algebra applied to the general time-dependent quadratic Hamiltonian system
    Choi, J. R.
    Nahm, I. H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (01) : 1 - 15
  • [26] SU(1,1) Lie Algebra Applied to the General Time-dependent Quadratic Hamiltonian System
    J. R. Choi
    I. H. Nahm
    International Journal of Theoretical Physics, 2007, 46 : 1 - 15
  • [27] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [28] TIME-DEPENDENT DRIFT HAMILTONIAN
    BOOZER, AH
    PHYSICS OF FLUIDS, 1984, 27 (10) : 2441 - 2445
  • [29] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [30] Computing the effective Hamiltonian for a time-dependent Hamiltonian
    Nolte, Martin
    Kroener, Dietmar
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 815 - 824