Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators

被引:11
|
作者
Dekel, S.
Kerkyacharian, G. [1 ,2 ]
Kyriazis, G. [3 ]
Petrushev, P. [4 ]
机构
[1] Univ Paris 06, CNRS UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
[2] Univ Paris 07, F-75013 Paris, France
[3] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[4] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
heat kernel; frames; Besov spaces; Triebel-Lizorkin spaces; Hardy spaces; WEIGHTED TRIEBEL-LIZORKIN; BESOV; DECOMPOSITION; BASES;
D O I
10.4064/sm225-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel Lizorkin spaces on the sphere, on the interval with Jacobi weights as well as on Lie groups, Riemannian manifolds, and in various other settings. The compactly supported frames are utilized to introduce atomic Hardy spaces H-A(p) in the general setting of this article.
引用
收藏
页码:115 / 163
页数:49
相关论文
共 50 条
  • [41] NONDEGENERATE JORDAN SUBSPACES OF SELF-ADJOINT OPERATORS IN INDEFINITE SPACES
    AZIZOV, TJ
    BINDING, PA
    BOGNAR, J
    NAJMAN, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 207 : 37 - 48
  • [42] SELF-ADJOINT OPERATORS IN INDEFINITE INNER PRODUCT-SPACES
    HANNABUSS, KC
    QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (155): : 333 - 348
  • [43] Elementary operators on self-adjoint operators
    Molnar, Lajos
    Smerl, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 302 - 309
  • [44] Singularly perturbed self-adjoint operators in scales of Hilbert spaces
    Albeverio S.
    Kuzhel' S.
    Nizhnik L.
    Ukrainian Mathematical Journal, 2007, 59 (6) : 787 - 810
  • [45] A CLASS OF POLYNOMIALS IN SELF-ADJOINT OPERATORS IN SPACES WITH AN INDEFINITE METRIC
    LO, CY
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (03): : 673 - &
  • [46] On sharp estimates for Schrodinger groups of fractional powers of nonnegative self-adjoint operators
    Bui, The Anh
    D'Ancona, Piero
    Duong, Xuan Thinh
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 381 : 260 - 292
  • [47] Diagonals of self-adjoint operators
    Arveson, William
    Kadison, Richard V.
    Operator Theory, Operator Algebras, and Applications, 2006, 414 : 247 - 263
  • [48] On the similarity to self-adjoint operators
    G. M. Gubreev
    A. A. Tarasenko
    Functional Analysis and Its Applications, 2014, 48 : 286 - 290
  • [49] ON THE PERMUTABILITY OF SELF-ADJOINT OPERATORS
    DEVINATZ, A
    NUSSBAUM, AE
    VONNEUMANN, J
    ANNALS OF MATHEMATICS, 1955, 62 (02) : 199 - 203
  • [50] Self-adjoint operators associated with Hankel moment matrices
    Berg, Christian
    Szwarc, Ryszard
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)