Adaptive approximate Bayesian computation by subset simulation for structural model calibration

被引:10
|
作者
Barros, Jose [1 ,2 ]
Chiachio, Manuel [2 ,3 ]
Chiachio, Juan [2 ,3 ]
Cabanilla, Frank [1 ]
机构
[1] Catholic Univ Santiago Guayaquil, Fac Engn, Guayaquil, Ecuador
[2] Univ Granada, Dept Struct Mech & Hydraul Engn, Granada, Spain
[3] Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
关键词
CHAIN MONTE-CARLO; PARAMETER-ESTIMATION; SELECTION; ELEMENT; INFERENCE;
D O I
10.1111/mice.12762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper provides a new approximate Bayesian computation (ABC) algorithm with reduced hyper-parameter scaling and its application to nonlinear structural model calibration problems. The algorithm initially takes the ABC-SubSim algorithm structure and sequentially estimates the algorithm hyper-parameter by autonomous adaptation following a Markov chain approach, thus avoiding the error associated to modeler's choice for these hyper-parameters. The resulting algorithm, named A2BC-SubSim, simplifies the application of ABC-SubSim method for new users while ensuring better measure of accuracy in the posterior distribution and improved computational efficiency. A first numerical application example is provided for illustration purposes and to provide a comparative and sensitivity analysis of the algorithm with respect to initial ABC-SubSim algorithm. Moreover, the efficiency of the method is demonstrated in two nonlinear structural calibration case studies where the A2BC-SubSim is used as a tool to infer structural parameters with quantified uncertainty based on test data. The results confirm the suitability of the method to tackle with a real-life damage parameter inference and its superiority in relation to the original ABC-SubSim.
引用
收藏
页码:726 / 745
页数:20
相关论文
共 50 条
  • [41] Approximate Bayesian computation methods
    Celeux, Gilles
    STATISTICS AND COMPUTING, 2012, 22 (06) : 1165 - 1166
  • [42] Correcting Approximate Bayesian Computation
    Templeton, Alan R.
    TRENDS IN ECOLOGY & EVOLUTION, 2010, 25 (09) : 488 - 489
  • [43] Approximate Bayesian Computation for Smoothing
    Martin, James S.
    Jasra, Ajay
    Singh, Sumeetpal S.
    Whiteley, Nick
    Del Moral, Pierre
    McCoy, Emma
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (03) : 397 - 420
  • [44] Multifidelity Approximate Bayesian Computation
    Prescott, Thomas P.
    Baker, Ruth E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 114 - 138
  • [45] Handbook of Approximate Bayesian Computation
    Franks, Jordan J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 2100 - 2101
  • [46] A tutorial on approximate Bayesian computation
    Turner, Brandon M.
    Van Zandt, Trisha
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (02) : 69 - 85
  • [47] Approximate Bayesian computation and MCMC
    Plagnol, V
    Tavaré, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 99 - 113
  • [48] Hierarchical Approximate Bayesian Computation
    Turner, Brandon M.
    Van Zandt, Trisha
    PSYCHOMETRIKA, 2014, 79 (02) : 185 - 209
  • [49] An Introduction to Approximate Bayesian Computation
    Nguyen, Hien D.
    STATISTICS AND DATA SCIENCE, RSSDS 2019, 2019, 1150 : 96 - 108
  • [50] Bayesian Subset Simulation
    Bect, Julien
    Li, Ling
    Vazquez, Emmanuel
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 762 - 786