The cover time of random geometric graphs

被引:0
|
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
机构
[1] Univ Londo, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
RANDOM-WALKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the cover time of random geometric graphs. Let I(d) = [0, 1](d) denote the unit torus in d dimensions. Let D(x, r) denote the ball (disc) of radius r. Let Gamma(d) be the volume of the unit ball D(0,1) in d dimensions. A random geometric graph G = G(d, r, n) in d dimensions is defined as follows: Sample n points V independently and uniformly at random from I(d). For each point x draw a ball D(x,r) of radius r about x. The vertex set V(G) = V and the edge set E(G) = {{v,w} : w not equal v, w is an element of D(v, r)}. Let G(d, r, n), d >= 3 be a random geometric graph. Let c > 1 be constant, and let r = (c log n/(Gamma(d)n))(1/d). Then whp C-G similar to c log (c/c - 1) n log n.
引用
收藏
页码:48 / +
页数:2
相关论文
共 50 条
  • [41] Spectral statistics of random geometric graphs
    Dettmann, C. P.
    Georgiou, O.
    Knight, G.
    EPL, 2017, 118 (01)
  • [42] ON THE SPECTRUM OF DENSE RANDOM GEOMETRIC GRAPHS
    Adhikari, Kartick
    Adler, Robert J.
    Bobrowski, Omer
    Rosenthal, Ron
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 1734 - 1773
  • [43] Efficient Broadcast on Random Geometric Graphs
    Bradonjic, Milan
    Elsasser, Robert
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 1412 - +
  • [44] Localization game for random geometric graphs
    Lichev, Lyuben
    Mitsche, Dieter
    Pralat, Pawel
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 108
  • [45] Highly connected random geometric graphs
    Balister, Paul
    Bollobas, Bela
    Sarkar, Amites
    Walters, Mark
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) : 309 - 320
  • [46] Cliques in geometric inhomogeneous random graphs
    Michielan, Riccardo
    Stegehuis, Clara
    JOURNAL OF COMPLEX NETWORKS, 2022, 10 (01)
  • [47] THE MODEL THEORY OF GEOMETRIC RANDOM GRAPHS
    Ben-Neria, Omer
    Kaplan, Itay
    Zou, Tingxiang
    arXiv, 2023,
  • [48] Improved Reconstruction of Random Geometric Graphs
    Dani, Varsha
    Díaz, Josep
    Hayes, Thomas P.
    Moore, Cristopher
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 229
  • [49] Stretch and Diameter in Random Geometric Graphs
    Ganesan, Ghurumuruhan
    ALGORITHMICA, 2018, 80 (01) : 300 - 330
  • [50] BOOTSTRAP PERCOLATION ON RANDOM GEOMETRIC GRAPHS
    Bradonjic, Milan
    Saniee, Iraj
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2014, 28 (02) : 169 - 181