Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators

被引:42
|
作者
Gottlieb, S [1 ]
Gottlieb, LAJ
机构
[1] Univ Massachusetts, Dept Math, Dartmouth, MA 02747 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
strong stability preserving; Runge-Kutta methods; high order accuracy; time discretization;
D O I
10.1023/A:1020338228736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strong stability preserving (SSP) high order Runge-Kutta time discretizations were developed for use with semi-discrete method of lines approximations of hyperbolic partial differential equations, and have proven useful in many other applications. These high order time discretization methods preserve the strong stability properties of first order explicit Euler time stepping. In this paper we analyze the SSP properties of Runge Kutta methods for the ordinary differential equation u(t) = Lu where L is a linear operator. We present optimal SSP Runge-Kutta methods as well as a bound on the optimal timestep restriction. Furthermore, we extend the class of SSP Runge-Kutta methods for linear operators to include the case of time dependent boundary conditions, or a time dependent forcing term.
引用
收藏
页码:83 / 109
页数:27
相关论文
共 50 条
  • [41] On high order strong stability preserving runge-kutta and multi step time discretizations
    Sigal Gottlieb
    Journal of Scientific Computing, 2005, 25 (1-2) : 105 - 128
  • [42] Strong Stability Preserving Two-Derivative Two-Step Runge-Kutta Methods
    Qin, Xueyu
    Jiang, Zhenhua
    Yan, Chao
    MATHEMATICS, 2024, 12 (16)
  • [43] Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity
    Sun, Zheng
    Shu, Chi-Wang
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (04) : 671 - 700
  • [44] Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity
    Zheng Sun
    Chi-Wang Shu
    Communications on Applied Mathematics and Computation, 2021, 3 : 671 - 700
  • [45] Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations
    Wang, Xiaobo
    Weile, Daniel S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (12) : 4651 - 4663
  • [46] Stability properties of explicit exponential Runge-Kutta methods
    Maset, S.
    Zennaro, M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 111 - 135
  • [47] Dense Output for Strong Stability Preserving Runge–Kutta Methods
    David I. Ketcheson
    Lajos Lóczi
    Aliya Jangabylova
    Adil Kusmanov
    Journal of Scientific Computing, 2017, 71 : 944 - 958
  • [48] Preserving algebraic invariants with Runge-Kutta methods
    Iserles, A
    Zanna, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 69 - 81
  • [49] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [50] NON-LINEAR STABILITY OF ADAPTIVE RUNGE-KUTTA METHODS
    STREHMEL, K
    WEINER, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (11): : 569 - 572