Spatially Varying Autoregressive Processes

被引:7
|
作者
Nobre, Aline A. [1 ]
Sanso, Bruno [2 ]
Schmidt, Alexandra M. [3 ]
机构
[1] Fundacao Oswaldo Cruz, Comp Sci Program, BR-21045900 Rio De Janeiro, Brazil
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
Nonhomogeneous processes; Process convolutions; Spatio-temporal model; SPACE; MODEL;
D O I
10.1198/TECH.2011.10008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a class of models for processes indexed in time and space that are based on autoregressive (AR) processes at each location. We use a Bayesian hierarchical structure to impose spatial coherence for the coefficients of the AR processes. The priors on such coefficients consist of spatial processes that guarantee time stationarity at each point in the spatial domain. The AR structures are coupled with a dynamic model for the mean of the process, which is expressed as a linear combination of time-varying parameters. We use satellite data on sea surface temperature for the North Pacific to illustrate how the model can be used to separate trends, cycles, and short-term variability for high-frequency environmental data. This article has supplementary material online.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 50 条
  • [41] INFORMATION RATES OF AUTOREGRESSIVE PROCESSES
    GRAY, RM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (04) : 412 - +
  • [42] Disaggregation of spatial autoregressive processes
    Leonenko, Nikolai
    Taufer, Emanuele
    SPATIAL STATISTICS, 2013, 3 : 1 - 20
  • [43] Stability and asymptotics for autoregressive processes
    Chen, Likai
    Wu, Wei Biao
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3723 - 3751
  • [44] Membranes with spatially varying permeability
    Blevins, Adrienne
    Cox, Lewis
    Killgore, Jason
    Ding, Yifu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] EXTREMES OF AUTOREGRESSIVE THRESHOLD PROCESSES
    Brachner, Claudia
    Fasen, Vicky
    Lindner, Alexander
    ADVANCES IN APPLIED PROBABILITY, 2009, 41 (02) : 428 - 451
  • [47] ADAPTIVE ESTIMATES FOR AUTOREGRESSIVE PROCESSES
    BERAN, R
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1976, 28 (01) : 77 - 89
  • [48] ADAPTIVE IDENTIFICATION OF AUTOREGRESSIVE PROCESSES
    HOSHIYA, M
    MARUYAMA, O
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1991, 117 (07): : 1442 - 1454
  • [49] On Bayesian Identification of Autoregressive Processes
    Shaarawy, Samir M.
    Soliman, Emad E. A.
    Sorour, Waseem W.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2015, 11 (01) : 11 - 28
  • [50] PREDICTION OF AUTOREGRESSIVE LOGNORMAL PROCESSES
    STOICA, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (02) : 292 - 294