A novel Bayesian method for variable selection and estimation in binary quantile regression

被引:2
|
作者
Dao, Mai [1 ]
Wang, Min [2 ]
Ghosh, Souparno [3 ]
机构
[1] Wichita State Univ, Dept Math Stat & Phys, Wichita, KS USA
[2] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
[3] Univ Nebraska, Dept Stat, Lincoln, NE USA
关键词
binary quantile regression; Gibbs sampler; importance sampling; variable selection;
D O I
10.1002/sam.11591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a Bayesian hierarchical model and associated computation strategy for simultaneously conducting parameter estimation and variable selection in binary quantile regression. We specify customary asymmetric Laplace distribution on the error term and assign quantile-dependent priors on the regression coefficients and a binary vector to identify the model configuration. Thanks to the normal-exponential mixture representation of the asymmetric Laplace distribution, we proceed to develop a novel three-stage computational scheme starting with an expectation-maximization algorithm and then the Gibbs sampler followed by an importance re-weighting step to draw nearly independent Markov chain Monte Carlo samples from the full posterior distributions of the unknown parameters. Simulation studies are conducted to compare the performance of the proposed Bayesian method with that of several existing ones in the literature. Finally, two real-data applications are provided for illustrative purposes.
引用
收藏
页码:766 / 780
页数:15
相关论文
共 50 条
  • [41] Variable selection and coefficient estimation via composite quantile regression with randomly censored data
    Jiang, Rong
    Qian, Weimin
    Zhou, Zhangong
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) : 308 - 317
  • [42] Bayesian variable selection for regression models
    Kuo, L
    Mallick, B
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, : 170 - 175
  • [43] Bayesian variable selection for logistic regression
    Tian, Yiqing
    Bondell, Howard D.
    Wilson, Alyson
    STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (05) : 378 - 393
  • [44] Variable selection of varying coefficient models in quantile regression
    Noh, Hohsuk
    Chung, Kwanghun
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1220 - 1238
  • [45] Variable selection of the quantile varying coefficient regression models
    Weihua Zhao
    Riquan Zhang
    Yazhao Lv
    Jicai Liu
    Journal of the Korean Statistical Society, 2013, 42 : 343 - 358
  • [46] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [47] Variable selection of the quantile varying coefficient regression models
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 343 - 358
  • [48] Variable selection in quantile regression via Gibbs sampling
    Alhamzawi, Rahim
    Yu, Keming
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (04) : 799 - 813
  • [49] Mixed effect modelling and variable selection for quantile regression
    Bar, Haim
    Booth, James G.
    Wells, Martin T.
    STATISTICAL MODELLING, 2023, 23 (01) : 53 - 80
  • [50] Study of Bayesian variable selection method on mixed linear regression models
    Li, Yong
    Liu, Hefei
    Li, Rubing
    PLOS ONE, 2023, 18 (03):