A Low Dispersion Precise Integration Time Domain Method Based on Wavelet Galerkin Scheme

被引:11
|
作者
Sun, Gang [1 ]
Ma, Xikui [1 ]
Bai, Zhongming
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Dispersion; Moment methods; Time domain analysis; Microstrip antennas; Finite difference methods; Numerical stability; wavelet Galerkin scheme; Daubechies scaling functions; precise integration time domain (PITD) method; STABILITY;
D O I
10.1109/LMWC.2010.2079920
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To decrease the dispersion error of the precise integration time domain (PITD) method, a new algorithm named the wavelet Galerkin scheme-based PITD (WG-PITD) method is proposed in this letter. The novel method is based on both the wavelet Galerkin scheme and the precise integration technique. The dispersion relation of the WG-PITD method is derived analytically. It is found that the dispersion error of the WG-PITD method is smaller than that of the PITD method, and can be made nearly independent of the time step size. The numerical results confirm the advantages of the WG-PITD method over the PITD method with respect to the memory requirements and the execution time.
引用
收藏
页码:651 / 653
页数:3
相关论文
共 50 条
  • [21] Evaluation of 3D time domain green function based on the Precise Integration Method
    Tong, Xiao-Wang
    Ren, Hui-Long
    Li, Hui
    Shan, Peng-Hao
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2013, 17 (09): : 990 - 997
  • [22] Stability Condition and Numerical Dispersion of Fourth-Order Compact Precise-Integration Time-Domain Method
    Kang, Zhen
    Ma, Xikui
    Yang, Fang
    Li, Weilin
    Zhao, Xin
    Wu, Xuanlyu
    Wu, Xiaohua
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [23] Dissipative Scheme for Discontinuous Galerkin Time-Domain Method Based on a Leap-Frog Time-Stepping
    Peng, Da
    Tang, Xingji
    Yang, Hu
    He, Jianguo
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2013, 28 (07): : 573 - 580
  • [24] TIME INTEGRATION OF THE NONLINEAR GALERKIN METHOD
    GARCIAARCHILLA, B
    DEFRUTOS, J
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1995, 15 (02) : 221 - 244
  • [25] TIME INTEGRATION WITH THE WEIGHTED GALERKIN METHOD
    HUCKFELDT, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T689 - T693
  • [26] A Low-Storage Discontinuous Galerkin Time-Domain Method
    Tian, Cheng-Yi
    Shi, Yan
    Liang, Chang-Hong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (01) : 1 - 3
  • [27] A Discontinous Galerkin Finite Element Method with An Efficient Time Integration Scheme for Accurate Simulations
    Liu, Meilin
    Bagci, Hakan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 3261 - 3263
  • [28] Time-domain averaging of precise integration method for response of random vibration
    Zhang, Senwen
    Cao, Kaibin
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 12 (03): : 367 - 373
  • [29] Application of wavelet-Galerkin time domain method in the composite scattering of target and lossy ground
    Dai Shao-Yu
    Wu Zhen-Sen
    ACTA PHYSICA SINICA, 2008, 57 (12) : 7635 - 7640
  • [30] Wavelet-Galerkin of time domain method to analyze the scattering problems of randomly rough surface
    Dai, Shao-yu
    Wu, Zhen-sen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (04) : 928 - 931