Classification of Firewall Log Data Using Multiclass Machine Learning Models

被引:11
|
作者
Aljabri, Malak [1 ,2 ]
Alahmadi, Amal A. [3 ]
Mohammad, Rami Mustafa A. [4 ]
Aboulnour, Menna [2 ]
Alomari, Dorieh M. [5 ]
Almotiri, Sultan H. [1 ]
机构
[1] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca 21955, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, SAUDI ARAMCO Cybersecur Chair, POB 1982, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Networks & Commun, POB 1982, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Informat Syst, POB 1982, Dammam 31441, Saudi Arabia
[5] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Engn, SAUDI ARAMCO Cybersecur Chair, POB 1982, Dammam 31441, Saudi Arabia
关键词
machine learning; deep learning; network security; firewalls; random forest;
D O I
10.3390/electronics11121851
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
These days, we are witnessing unprecedented challenges to network security. This indeed confirms that network security has become increasingly important. Firewall logs are important sources of evidence, but they are still difficult to analyze. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have emerged as effective in developing robust security measures due to the fact that they have the capability to deal with complex cyberattacks in a timely manner. This work aims to tackle the difficulty of analyzing firewall logs using ML and DL by building multiclass ML and DL models that can analyze firewall logs and classify the actions to be taken in response to received sessions as "Allow", "Drop", "Deny", or "Reset-both". Two sets of empirical evaluations were conducted in order to assess the performance of the produced models. Different features set were used in each set of the empirical evaluation. Further, two extra features, namely, application and category, were proposed to enhance the performance of the proposed models. Several ML and DL algorithms were used for the evaluation purposes, namely, K-Nearest Neighbor (KNN), Naive Bayas (NB), J48, Random Forest (RF) and Artificial Neural Network (ANN). One interesting reading in the experimental results is that the RF produced the highest accuracy of 99.11% and 99.64% in the first and the second experiments respectively. Yet, all other algorithms have also produced high accuracy rates which confirm that the proposed features played a significant role in improving the firewall classification rate.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Feasibility of Active Machine Learning for Multiclass Compound Classification
    Lang, Tobias
    Flachsenberg, Florian
    von Luxburg, Ulrike
    Rarey, Matthias
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (01) : 12 - 20
  • [32] Multiclass Classification Machine Learning Identification of Common Poisonings
    Nogee, Daniel
    Haimovich, Adrian
    Hart, Katherine
    Tomassoni, Anthony
    CLINICAL TOXICOLOGY, 2020, 58 (11) : 1083 - 1084
  • [33] Application of Machine Learning on Brain Cancer Multiclass Classification
    Panca, V.
    Rustam, Z.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [34] Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification
    Surantha, Nico
    Gozali, Isabella D.
    ELECTRONICS, 2023, 12 (16)
  • [35] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63
  • [36] Active Learning for Multiclass Cost-Sensitive Classification Using Probabilistic Models
    Chen, Po-Lung
    Lin, Hsuan-Tien
    2013 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2013, : 13 - 18
  • [37] Active learning with extreme learning machine for online imbalanced multiclass classification
    Qin, Jiongming
    Wang, Cong
    Zou, Qinhong
    Sun, Yubin
    Chen, Bin
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [38] Machine Learning Models to Predict Multiclass Protein Classifications
    Parikh, Yash
    Abdelfattah, Eman
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 300 - 304
  • [39] Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
    Wang, Yuanfa
    Li, Zunchao
    Feng, Lichen
    Zheng, Chuang
    Zhang, Wenhao
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [40] Predicting data science performance from log data: using machine learning
    Doleck, Tenzin
    Agand, Pedram
    Pirrotta, Dylan
    EDUCATION AND INFORMATION TECHNOLOGIES, 2025,