Vehicle Detection in Aerial Images Based on Lightweight Deep Convolutional Network and Generative Adversarial Network

被引:22
|
作者
Shen, Jiaquan [1 ,2 ]
Liu, Ningzhong [1 ,2 ]
Sun, Han [1 ,2 ]
Zhou, Huiyu [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] MIIT Key Lab Pattern Anal & Machine Intelligence, Nanjing 211106, Peoples R China
[3] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
基金
中国国家自然科学基金;
关键词
Vehicle detection; lightweight convolutional network; generative adversarial network; aerial images;
D O I
10.1109/ACCESS.2019.2947143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle detection in aerial images is a challenging task and plays an important role in a wide range of applications. Traditional detection algorithms are based on sliding-window searching and shallow-learning-based features, which limits the ability to represent features and generates a lot of computational costs. Recently, with the successful application of convolutional neural network in computer vision, many state-of-the-art detectors have been developed based on deep CNNs. However, these CNN-based models still face some difficulties and challenges in vehicle detection in aerial images. Firstly, the CNN-based detection model requires extensive calculations during training and detection, and the accuracy of detection for small objects is not high. In addition, deep learning models often require a large amount of sample data to train a robust detection model, while the annotated data of aerial vehicles is limited. In this study, we propose a lightweight deep convolutional neural network detection model named LD-CNNs. The detection algorithm not only greatly reduces the computational costs of the model, but also significantly improves the accuracy of the detection. What's more, in order to cope with the problem of insufficient training samples, we develop a multi-condition constrained generative adversarial network named MC-GAN, which can effectively generate samples. The detection performance of the proposed model has been evaluated on the Munich public dataset and the collected dataset respectively. The results show that on the Munich dataset, the proposed method achieves 86.9% on mAP (mean average precision), F1-score is 0.875, and the detection time is 1.64s on Nvidia Titan XP. At present, these detection indicators have reached state-of-the-art level in vehicle detection of aerial images.
引用
收藏
页码:148119 / 148130
页数:12
相关论文
共 50 条
  • [31] Tomato plant leaf disease detection using generative adversarial network and deep convolutional neural network
    Deshpande, Rashmi
    Patidar, Hemant
    IMAGING SCIENCE JOURNAL, 2022, 70 (01): : 1 - 9
  • [32] An Approach for EEG Data Augmentation Based on Deep Convolutional Generative Adversarial Network
    Dong, Yuanzhe
    Tang, Xi
    Tan, Fangning
    Li, Qingge
    Wang, Yingying
    Zhang, Huanqing
    Xie, Jun
    Liang, Wenyuan
    Li, Guanglin
    Fang, Peng
    2022 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS, CBS, 2022, : 347 - 351
  • [33] Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
    Wang H.
    Ma Y.
    Zhang A.
    Lin D.
    Qi Y.
    Li J.
    Computational and Mathematical Methods in Medicine, 2023, 2023
  • [34] Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network
    Staffini, Alessio
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [35] Lightweight Cartoonlization Method Based on Generative Adversarial Network
    Sun Jinguang
    Wang Wei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [36] Comparative Analysis of Deep Convolutional Generative Adversarial Network and Conditional Generative Adversarial Network using Hand Written Digits
    Prabhat
    Nishant
    Vishwakarma, Dinesh Kumar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1072 - 1075
  • [37] Detection of Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images
    Jiang, Zhongyi
    Gao, Xing
    Shi, Lin
    Li, Ning
    Zou, Ling
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [38] LW-DCGAN: a lightweight deep convolutional generative adversarial network for enhancing occluded face recognition
    Lv, Yingying
    Wang, Jianping
    Gao, Guohong
    Li, Qian
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [39] Robustness Study of a Deep Convolutional Neural Network for Vehicle Detection in Aerial Imagery
    O. V. Ilina
    M. V. Tereshonok
    Journal of Communications Technology and Electronics, 2022, 67 : 164 - 170
  • [40] Robustness Study of a Deep Convolutional Neural Network for Vehicle Detection in Aerial Imagery
    Ilina, O., V
    Tereshonok, M., V
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2022, 67 (02) : 164 - 170