Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs

被引:20
|
作者
Gao, Yong [1 ]
机构
[1] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, Dept Comp Sci, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Treewidth; Random graphs; Random intersection graphs; Scale-free random graphs; BOUNDED TREEWIDTH; TREE-WIDTH; EXPANSION;
D O I
10.1016/j.dam.2011.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions under which the treewidth of three different classes of random graphs is linear in the number of vertices. For the Erdos-Renyi random graph G(n, m), our result improves a previous lower bound obtained by Kloks (1994)[22]. For random intersection graphs, our result strengthens a previous observation on the treewidth by Karonski et al. (1999) [19]. For scale-free random graphs based on the Barabasi-Albert preferential-attachment model, it is shown that if more than 11 vertices are attached to a new vertex, then the treewidth of the obtained network is linear in the size of the network with high probability. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 50 条
  • [21] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399
  • [22] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [23] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [24] k-Connectivity in Random K-Out Graphs Intersecting Erdos-Renyi Graphs
    Yavuz, Faruk
    Zhao, Jun
    Yagan, Osman
    Gligor, Virgil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (03) : 1677 - 1692
  • [25] Evolution of tag-based cooperation on Erdos-Renyi random graphs
    Lima, F. W. S.
    Hadzibeganovic, Tarik
    Stauffer, Dietrich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (06):
  • [26] Fluctuations for the partition function of Ising models on Erdos-Renyi random graphs
    Kabluchko, Zakhar
    Loewe, Matthias
    Schubert, Kristina
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2017 - 2042
  • [27] Random walk hitting times and effective resistance in sparsely connected Erdos-Renyi random graphs
    Sylvester, John
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 44 - 84
  • [28] PageRank in Scale-Free Random Graphs
    Chen, Ningyuan
    Litvak, Nelly
    Olvera-Cravioto, Mariana
    ALGORITHMS AND MODELS FOR THE WEB GRAPH (WAW 2014), 2014, 8882 : 120 - 131
  • [29] The importance sampling technique for understanding rare events in Erdos-Renyi random graphs
    Bhamidi, Shankar
    Hannig, Jan
    Lee, Chia Ying
    Nolen, James
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [30] Return probabilities and hitting times of random walks on sparse Erdos-Renyi graphs
    Martin, O. C.
    Sulc, P.
    PHYSICAL REVIEW E, 2010, 81 (03)