Long-time behavior for a nonlinear parabolic problem with variable exponents

被引:18
|
作者
Niu, Weisheng [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
关键词
Global attractors; Variable exponents; Fractal dimension; INFINITE-DIMENSIONAL ATTRACTORS; GLOBAL ATTRACTORS; P-LAPLACIAN; EQUATIONS; REGULARITY; EMBEDDINGS; EXISTENCE;
D O I
10.1016/j.jmaa.2012.03.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the question of the asymptotic behavior of solutions to the p(x)-Laplacian problem u(t) - div(vertical bar del u vertical bar(p(x)-2)del u) + f(x, u) = g. With general assumptions on f (x, u) and the exponent p(x), we prove the existence of global attractors in proper spaces. Then we consider the fractal dimension of global attractors for the problem. Under suitable conditions, we show that the problem admits an infinite-dimensional global attractor. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条