Iterative methods for least-square problems based on proper splittings

被引:16
|
作者
Climent, JJ
Perea, C
机构
[1] Univ Alicante, Dept Ciencia Computacio & Intelligencia Artificia, E-03080 Alicante, Spain
[2] Univ Miguel Hernandez, Dept Estadist & Matemat Aplicada, Escuela Politecn Super Orihuela, E-03550 Orihuela, Spain
关键词
iterative method; proper splitting; multisplitting; Moore-Penrose inverse; least-square problem;
D O I
10.1016/S0377-0427(03)00465-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the linear-squares problems min, parallel tob - Axparallel to(2), where A is large and sparse, straightforward application of Cholesky or QR factorization will lead to catastrophic fill in factor R. We consider handling such problems by a iterative methods based on proper splittings. We establish the convergence, to the least-square solution y = Adaggerx, for the sequential two-stage iterative method and for the parallel stationary iterative method. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [21] Iterative Methods Based on Proper Splittings for the Generalized Inverse AT,S(1,2)
    Qin, Mei
    Kang, Yongwei
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 254 - 257
  • [22] An Iterative Least-Square Training Method for Classification-Based Motion Adaptive Temporal Filtering
    Kim, Sung Deuk
    Lim, Kyoung Won
    2010 DIGEST OF TECHNICAL PAPERS INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS ICCE, 2010,
  • [23] Least-square approach for singular value decompositions of scattering problems
    Tichai, A.
    Arthuis, P.
    Hebeler, K.
    Heinz, M.
    Hoppe, J.
    Schwenk, A.
    Zurek, L.
    PHYSICAL REVIEW C, 2022, 106 (02)
  • [24] A LEAST-SQUARE SOLUTION AND ERROR ESTIMATE FOR SOME VIBRATION PROBLEMS
    ATANACKOVIC, TM
    ACHENBACH, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (01): : 57 - 59
  • [26] Least-square circles in the plane
    Krystek, M
    TECHNISCHES MESSEN, 2004, 71 (05): : 319 - 323
  • [27] LEAST-SQUARE EXPONENTIAL APPROXIMATION
    DIAMESSIS, JE
    ELECTRONICS LETTERS, 1972, 8 (18) : 454 - +
  • [28] Least-square fitting with spheres
    Spath, H
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (01) : 191 - 199
  • [29] RANDOM LEAST-SQUARE ANALYSIS
    DOWDEE, JW
    SOONG, TT
    SIAM REVIEW, 1973, 15 (01) : 251 - +
  • [30] Least-Square Fitting with Spheres
    H. Späth
    Journal of Optimization Theory and Applications, 1998, 96 : 191 - 199