Data-Driven Distributed Mitigation Strategies and Analysis of Mutating Epidemic Processes

被引:0
|
作者
Pare, Philip E. [1 ]
Gracy, Sebin [2 ]
Sandberg, Henrik [2 ]
Johansson, Karl Henrik [2 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, Stockholm, Sweden
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
SPREAD; MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study a discrete-time SIS (susceptible-infected-susceptible) model, where the infection and healing parameters and the underlying network may change over time. We provide conditions for the model to be well-defined and study its stability. For systems with homogeneous infection rates over symmetric graphs, we provide a sufficient condition for global exponential stability (GES) of the healthy state, that is, where the virus is eradicated. For systems with heterogeneous virus spread over directed graphs, provided that the variation is not too fast, a sufficient condition for GES of the healthy state is established. Appealing to the first stability result, we present two data-driven mitigation strategies that set the healing parameters in a centralized and a distributed manner, respectively, in order to drive the system to the healthy state.
引用
收藏
页码:6138 / 6143
页数:6
相关论文
共 50 条
  • [31] A Data-Driven Statistical Approach for Monitoring and Analysis of Large Industrial Processes
    Montazeri, A.
    Ansarizadeh, M. H.
    Arefi, M. M.
    IFAC PAPERSONLINE, 2019, 52 (13): : 2354 - 2359
  • [32] Data-Driven Strategies for Accelerated Materials Design
    Pollice, Robert
    Gomes, Gabriel dos Passos
    Aldeghi, Matteo
    Hickman, Riley J.
    Krenn, Mario
    Lavigne, Cyrille
    Lindner-D'Addario, Michael
    Nigam, AkshatKumar
    Ser, Cher Tian
    Yao, Zhenpeng
    Aspuru-Guzik, Alan
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) : 849 - 860
  • [33] Data-Driven Optimization of Processes with Degrading Equipment
    Wiebe, Johannes
    Cecilia, Ines
    Misener, Ruth
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (50) : 17177 - 17191
  • [34] Dynamic Data-Driven Modeling of Pharmaceutical Processes
    Boukouvala, F.
    Muzzio, F. J.
    Ierapetritou, Marianthi G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (11) : 6743 - 6754
  • [35] Data-driven design of engineering processes with COREPROModeler
    Mueller, Dominic
    Reichert, Manfred
    Herbst, Joachim
    Poppa, Florian
    WET ICE 2007: 16TH IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES, PROCEEDINGS, 2007, : 376 - 378
  • [36] Data-Driven Langevin Modeling of Nonequilibrium Processes
    Lickert, Benjamin
    Wolf, Steffen
    Stock, Gerhard
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (29): : 8125 - 8136
  • [37] Data-Driven Anomaly Diagnosis for Machining Processes
    Liang, Y. C.
    Wang, S.
    Li, W. D.
    Lu, X.
    ENGINEERING, 2019, 5 (04) : 646 - 652
  • [38] Analysis and Distributed Control of Periodic Epidemic Processes
    Gracy, Sebin
    Pare, Philip E.
    Sandberg, Henrik
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 123 - 134
  • [39] Data-driven approaches for runoff prediction using distributed data
    Heechan Han
    Ryan R. Morrison
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2153 - 2171
  • [40] Autoregressive processes with data-driven regime switching
    Kamgaing, Joseph Tadjuidje
    Ombao, Hernando
    Davis, Richard A.
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (05) : 505 - 533