Influence Maximization Problem in Social Networks: An Overview

被引:8
|
作者
Jaouadi, Myriam [1 ]
Ben Romdhane, Lotfi [1 ]
机构
[1] Univ Sousse, ISITCom, MARS Res Lab LR17ES05, Sousse, Tunisia
关键词
COMPLEX NETWORKS; ALGORITHM; DIFFUSION; DIVERSITY; RANKING;
D O I
10.1109/aiccsa47632.2019.9035366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Social networks have attracted a great deal of attention and have in fact important information vectors that have changed the way we produce, consume and diffuse information. Social networks' analysis has been of great interest and has encompassed different research areas including community detection, the discovery of web services from social networks, information diffusion, detection of infuential nodes. The process of detecting influential nodes in social networks is often khown as Influence Maximization (IM) problem, it deals with finding a small subset of nodes that spread maximum influence in the network. It has been proved that it has many applications such as the propagation of opinions, the study of the acceptance of political blogs or the study of the degree of adhesion of an actor to a product in marketing (web marketing). A such maximization requieres the presence of a diffusion model that controls information propagation within active individuals. This paper aims to provide a survey on the influence maximization problem and focuses on two aspects, influence diffusion models and proposed approaches for influential nodes detection. We start by describing formally the IM problem, then we will provide the state-of-the-art of both diffusion models and influence maximization algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Influence maximization of informed agents in social networks
    AskariSichani, Omid
    Jalili, Mahdi
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 229 - 239
  • [42] Influence Maximization in Social Networks with Genetic Algorithms
    Bucur, Doina
    Iacca, Giovanni
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT I, 2016, 9597 : 379 - 392
  • [43] Relative influence maximization in competitive social networks
    Dingda Yang
    Xiangwen Liao
    Huawei Shen
    Xueqi Cheng
    Guolong Chen
    Science China Information Sciences, 2017, 60
  • [44] Maximization influence in dynamic social networks and graphs
    Smani, Gkolfo I.
    Megalooikonomou, Vasileios
    ARRAY, 2022, 15
  • [45] Exploring Online Social Networks for Influence Maximization
    Yellakuor, Baagyere Edward
    Qin Zhen
    Xiong Hu
    Qin Zhiguang
    2015 INTERNATIONAL CONFERENCE AND WORKSHOP ON COMPUTING AND COMMUNICATION (IEMCON), 2015,
  • [46] Influence Maximization with Trust Relationship in Social Networks
    Wang, Nan
    Li, Jinbao
    Da, Jiansong
    Liu, Yong
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 61 - 67
  • [47] Estimate on Expectation for Influence Maximization in Social Networks
    Zhang, Yao
    Gu, Qing
    Zheng, Jun
    Chen, Daoxu
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 99 - 106
  • [48] Influence Maximization with Novelty Decay in Social Networks
    Feng, Shanshan
    Chen, Xuefeng
    Cong, Gao
    Zeng, Yifeng
    Chee, Yeow Meng
    Xiang, Yanping
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 37 - 43
  • [49] Influence maximization in social networks with privacy protection
    Zhang, Xian-Jie
    Wang, Jing
    Ma, Xiao-Jing
    Ma, Chuang
    Kan, Jia-Qian
    Zhang, Hai-Feng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 607
  • [50] Influence Maximization with Latency Requirements on Social Networks
    Raghavan, S.
    Zhang, Rui
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (02) : 710 - 728