A Distributed Computation Offloading Strategy for Edge Computing Based on Deep Reinforcement Learning

被引:0
|
作者
Lai, Hongyang [1 ]
Yang, Zhuocheng [1 ]
Li, Jinhao [1 ]
Wu, Celimuge [2 ]
Bao, Wugedele [3 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Univ Electrocommun, Tokyo, Japan
[3] Hohhot Minzu Coll, Hohhot, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Computation offloading; Markov Decision Process; Deep reinforcement learning; CLOUD;
D O I
10.1007/978-3-030-94763-7_6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mobile edge computing (MEC) has emerged as a new key technology to reduce time delay at the edge of wireless networks, which provides a new solution of distributed computing. But due to the heterogeneity and instability of wireless local area networks, how to obtain a generalized computing offloading strategy is still an unsolved problem. In this research, we deploy a real small-scale MEC system with one edge server and several smart mobile devices and propose a task offloading strategy for one subject device on optimizing time and energy consumption. We formulate the long-term offloading problem as an infinite Markov Decision Process (MDP). Then we use deep Q-learning algorithm to help the subject device to find its optimal offloading decision in the MDP model. Compared with a strategy with fixed parameters, our Q-learning agent shows better performance and higher robustness in a scenario with an unstable network condition.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条
  • [21] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [22] Deep Reinforcement Learning and Game Theory for Computation Offloading in Dynamic Edge Computing Markets
    Li, Shuyang
    Hu, Xiaohui
    Du, Yongwen
    IEEE ACCESS, 2021, 9 : 121456 - 121466
  • [23] A Distributed Computation Offloading Scheduling Framework based on Deep Reinforcement Learning
    Dai, Bin
    Ren, Tao
    Niu, Jianwei
    Hu, Zheyuan
    Hu, Shucheng
    Qiu, Meikang
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 413 - 420
  • [24] Distributed computation offloading method based on deep reinforcement learning in ICV
    Chen, Chen
    Zhang, Yuru
    Wang, Zheng
    Wan, Shaohua
    Pei, Qingqi
    APPLIED SOFT COMPUTING, 2021, 103
  • [25] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [26] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [27] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [28] Computation offloading and resource allocation strategy based on deep reinforcement learning
    Zeng F.
    Zhang Z.
    Chen Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (07): : 124 - 135
  • [29] A High Reliable Computing Offloading Strategy Using Deep Reinforcement Learning for IoVs in Edge Computing
    Wang, Kun
    Wang, Xiaofeng
    Liu, Xuan
    JOURNAL OF GRID COMPUTING, 2021, 19 (02)
  • [30] A High Reliable Computing Offloading Strategy Using Deep Reinforcement Learning for IoVs in Edge Computing
    Kun Wang
    Xiaofeng Wang
    Xuan Liu
    Journal of Grid Computing, 2021, 19