Solving the 3D MHD equilibrium equations in toroidal geometry by Newton's method

被引:5
|
作者
Oliver, HJ [1 ]
Reiman, AH [1 ]
Monticello, DA [1 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
MHD equilibrium; Newton's method; Princeton Iterative Equilibrium Solver; PIES;
D O I
10.1016/j.jcp.2005.05.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a novel form of Newton's method for computing 3D MHD equilibria. The method has been implemented as an extension to the hybrid spectral/finite-difference Princeton Iterative Equilibrium Solver (PIES) which normally uses Picard iteration on the full nonlinear MHD equilibrium equations. Computing the Newton functional derivative numerically is not feasible in a code of this type but we are able to do the calculation analytically in magnetic coordinates by considering the response of the plasma's Pfirsch-Schluter currents to small changes in the magnetic field. Results demonstrate a significant advantage over Picard iteration in many cases, including simple finite-beta stellarator equilibria. The method shows promise in cases that are difficult for Picard iteration, although it is sensitive to resolution and imperfections in the magnetic coordinates, and further work is required to adapt it to the presence of magnetic islands and stochastic regions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 128
页数:30
相关论文
共 50 条
  • [21] Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method
    Shi, Zhi
    Cao, Yong-yan
    Chen, Qing-jiang
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5143 - 5161
  • [22] Free boundary equilibrium in 3D tokamaks with toroidal rotation
    Cooper, W. A.
    Brunetti, D.
    Faustin, J. M.
    Graves, J. P.
    Pfefferle, D.
    Raghunathan, M.
    Sauter, O.
    Tran, T. M.
    Chapman, I. T.
    Ham, C. J.
    Aiba, N.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    NUCLEAR FUSION, 2015, 55 (06)
  • [23] Global regularity to the 3D incompressible MHD equations
    Zhang, Peixin
    Yu, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 613 - 631
  • [24] A Regularity Criterion for the 3D Generalized MHD Equations
    Jishan Fan
    Ahmed Alsaedi
    Tasawar Hayat
    Gen Nakamura
    Yong Zhou
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 333 - 340
  • [25] Regularity for 3D MHD equations in Lorentz space
    Liu, Xiangao
    Liu, Yueli
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [26] Newton's Method for Solving Generalized Equations Without Lipschitz Condition
    Wang, Jiaxi
    Ouyang, Wei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 510 - 532
  • [27] Efficient Computations for Solving Algebraic Riccati Equations by Newton's Method
    Sima, Vasile
    2014 18TH INTERNATIONAL CONFERENCE SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2014, : 603 - 608
  • [28] Means based modifications of Newton's method for solving nonlinear equations
    Herceg, Dragoslav
    Herceg, Djordje
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6126 - 6133
  • [29] Improved convergence and complexity analysis of Newton's method for solving equations
    Argyros, Ioannis K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (01) : 67 - 73
  • [30] Pullback attractors for 3D MHD equations with damping
    Xiaoya Song
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73